Установленные нормы ЭМИ для человека
Каждый орган в нашем теле вибрирует. Благодаря вибрации вокруг нас создается электромагнитное поле, содействующее гармоничной работе всего организма. Когда на наше биополе воздействуют другие магнитные поля, это вызывает в нем изменения. Иногда организм справляется с влиянием, иногда – нет. Это становится причиной ухудшения самочувствия.
Даже большое скопление людей создает электрический заряд в атмосфере. Полностью изолироваться от электромагнитного излучения невозможно. Есть допустимый уровень ЭМИ, который лучше не превышать.
Вот безопасные для здоровья нормы:
- 30-300 кГц, возникающие при напряженности поля 25 Вольт на метр (В/м),
- 0,3-3 МГц, при напряженности 15 В/м,
- 3-30 МГц – напряженность 10 В/м,
- 30-300 МГц – напряженность 3 В/м,
- 300 МГц-300 ГГц – напряженность 10 мкВт/см2.
При таких частотах работают гаджеты, радио- и телеаппаратура.
Защита от электромагнитных излучений
- Если вы проводите много времени за компьютером, запомните одно правило: расстояние между лицом и монитором должно быть около метра.
- Уровень электромагнитного излучения бытовой техники, которую вы покупаете, не должен доходить до о. Обратитесь к продавцу-консультанту. Он поможет выбрать наиболее безопасную технику.
- Ваша кровать не должна находиться рядом с местом, где проложена электропроводка. Расположите спальное место в противоположном конце комнаты.
- Установите защитный экран на компьютер. Он выполнен в виде мелкой металлической сетки и действует по принципу Фарадея: вбирает в себя все излучение, защищая пользователя.
- Сократите пребывание в электрифицированном общественном транспорте. Отдавайте предпочтение пешей ходьбе, велосипеду.
Применение лазеров
Технологические лазеры
Резка, сварка и пайка. Лазеры непрерывного действия, обладающие
огромной мощностью, позволяют осуществлять резку, сварку и пайку широкого
спектра материалов. Их огромная тепловая мощность позволяет соединять
несовместимые материалы, создавая, например, металлокерамические амальгамы,
которые не могут быть получены традиционными способами.
Производство микрочипов. Способность лазера уменьшать
фокус до мельчайших точек позволяет с высокой точностью изготавливать
микрочипы, необходимые в современной цифровой технике.
Строительство и геодезия. Лазерные лучи,
характеризующиеся прямолинейной траекторией, служат безупречными линейками в
строительстве, а также позволяют измерять большие расстояния с помощью
импульсно-периодических методик.
Лазерная связь
Передача данных. Лазеры произвели революцию в области
связи, обеспечив передачу несравнимо большего объема информации по сравнению с
высокочастотными радиоканалами за счет значительно меньшей длины волны.
Индустрия звукозаписи. Лазерные технологии стали
основой индустрии звукозаписи, упростив запись и воспроизведение аудио— и
визуального контента на компакт-дисках.
Применение в медицине
Хирургия глаза. Лазеры находят широкое применение в
сложных глазных операциях, помогая в таких процедурах, как реплантация сетчатки,
с помощью неинвазивных методов.
Общая хирургия. Лазерные скальпели позволили достичь
значительного уменьшения повреждения тканей по сравнению с традиционными. Они
стали неотъемлемой частью современной хирургии.
Терапия. Лазеры малой мощности способствуют
регенерации тканей и предлагают альтернативы иглоукалыванию.
Косметология. Диодные и пикосекундные лазеры изменили
косметологию, предложив целый ряд новых нетравматических процедур.
Современные научные исследования
Исследование звезд. Лазеры дают представление о
составе звезд, позволяя исследователям моделировать условия, существующие в их
ядрах.
Термоядерный синтез. Лазерные лучи играют ключевую
роль в стимулировании термоядерных реакций, направленных на достижение
управляемого ядерного синтеза — потенциального источника огромной энергии.
Генная инженерия и нанотехнологии. В сферах генетики
и нанотехнологий лазеры способствуют тщательному манипулированию
микроскопическими объектами, определяя прогресс в этих областях.
Исследования атмосферы. Лазерные локаторы или лидары
активно участвуют в атмосферных исследованиях, помогая производить
дистанционные измерения.
Как появляются и распространяются электромагнитные волны
Представьте себе неподвижный точечный заряд. Пусть его окружают еще много таких зарядов. Тогда он будет действовать на них с некоторой кулоновской силой (и они на него). А теперь представьте, что заряд сместился. Это приведет к изменению расстояния по отношению к другим зарядам, а, следовательно, и к изменению сил, действующих на них. В результате они тоже сместятся, но с некоторым запаздыванием. При этом начнут смещаться и другие заряды, которые взаимодействовали с ними. Так распространяется электромагнитные взаимодействия.
Теперь представьте, что заряд не просто сместился, а он начал быстро колебаться вдоль одной прямой. Тогда по характеру движения он будет напоминать шарик, подвешенный к пружине. Разница будет только в том, что колебания заряженных частиц происходят с очень высокой частотой.
Вокруг колеблющегося заряда начнет периодически изменяться электрическое поле. Очевидно, что период изменений этого поля, будет равен периоду колебаний заряда. Периодически меняющееся электрическое поле будет порождать периодически меняющееся магнитное поле. Это магнитное поле, в свою очередь, будет создавать переменное электрическое поле, но уже на большем расстояние от заряда, и т.д. В результате появления взаимно порождаемых полей в пространстве, окружающем заряд, возникает система взаимно перпендикулярных, периодически меняющихся электрических и магнитных полей. Так образуется электромагнитная волна, которая распространяется от колеблющегося заряда во все стороны.
Электромагнитная волна не похожа на те возмущения вещественной среды, которые вызывают механические волны. Посмотрите на рисунок. На нем изображены векторы напряженности →E и магнитной индукции →B в различных точках пространства, лежащих на оси Oz, в фиксированный момент времени. Никаких гребней и впадин среды при этом не появляется.
В каждой точке пространства электрические и магнитные пол меняются во времени периодически. Чем дальше расположена точка от заряда, тем позднее ее достигнут колебания полей. Следовательно, на разных расстояниях от заряда колебания происходят с различными фазами. Колебания векторов →E и →B в любой точке совпадают по фазе.
Определение
Длина электромагнитной волны — расстояние между двумя ближайшими точками, в которых колебания происходят в одинаковых фазах.
Длина электромагнитной волны обозначается как λ. Единица измерения — м (метр).
Обратите внимание на рисунок выше. Векторы магнитной индукции и напряженности поля, являющиеся периодически изменяющимися величинами, в любой момент времени перпендикулярны направлению распространения волны
Следовательно, электромагнитная волна — поперечная волна.
Ruby Laser
23 3+3+3+23
Working:
Chromium
atoms consist of a metastable state of lifetime ~3 X 10-3 sec. When
a flash of light of wavelength 550nm falls upon the rod for a very short time
(about a millisecond), the chromium ion, in the ground state, absorbs a photon
and jumps to excited state E2. The excited ions drop to the
metastable state E3 very soon as lifetime of ions in excited state
is short. The transition is non radiative as the energy released is absorbed by
the lattice in which it is absorbed and is dissipated as heat. But the number
of atoms in metastable state goes on increasing as lifetime in metastable state
is high and soon exceeds those in the ground state, thus bringing about
population inversion.
After
this state is achieved, one or two photons released due to spontaneous emission
is sufficient to induce stimulated emission and light amplification will start.
The transition from M a G state radiates photons, which
after repeated reflection from the mirrors of the laser cavity amplifies
largely to an intense beam.
An
intense, highly directional, coherent beam of red light (λ = 694.3 nm)
emerges from the partially silvered end of the ruby rod as laser beam.
Обработка результатов
Результаты проверки обрабатываются, опираясь на инструкции к используемым приборам из числа широкополосных измерителей ППЭ типа П3-41 и П3-33М, а также селективных измерителей напряжённости поля типа Anritsu MS2721B и Narda SRM-3006.
Работы выполняются группой специалистов. Анализ плотности потока энергии СВЧ-излучения и лазерного излучения в пределах одной точки ведется в течение 1,5 часов.
Суммирование показателей, полученных с приборов, ведется при помощи специальных графиков, таблиц и формул. Пересчет ведется в международной системе мер измерения.
Величина, вносимая в протокол измерений, является среднеарифметической из 3 значений ЭМП.
Итоговый протокол направляется территориальные надзорные органы.
Содержание протокола измерений
- Сведения об объекте исследования;
- Оценка параметров электромагнитных полей СВЧ и УВЧ диапазонов;
- Заключения на основании полученных данных.
Документ оформляется на фирменном бланке привлекаемой лаборатории. Рекомендации по результатам исследований предоставляются бесплатно.
Информация о компании-исполнителе
Предприятие ЭкоЦентрПроект располагает собственной аккредитованной лабораторией, современной приборной базой и штатом узкоспециализированных специалистов.
Выездные инструментальные измерения проводятся на территории Москвы и московской области.
Работы ведутся в соответствии с действующими нормативами и методической документацией.
Оставить заявку на предоставление услуги рекомендуем на сайте. Оставьте комментарий в форме обратной связи, и мы произведем расчет стоимости исходя из вашего технического задания и площади объекта.
Что такое лазер
Лазер, или оптический квантовый генератор — это устройство, которое предназначено для преобразования электрической, тепловой и других видов энергии в узконаправленное излучение, характеризующееся когерентностью, монохроматичностью и поляризованностью.
Названа эта технология по первым буквам англоязычного выражения — Light Amplification by Stimulated Emission of Radiation (LASER) и переводится как «усиление света с помощью вынужденного излучения».
Изобретение лазера — это не одномоментное открытие, над ним работали многие ученые с начала XX века. Самые известные из них — Эйнштейн, Майман, Басов, Прохоров, Таунс.
Альберт Эйнштейн в 1917 году презентовал научную работу, в которой предсказал основной принцип работы оптического квантового генератора — вынужденное излучение. Гений был уверен в возможности заставить электроны излучать свет необходимой человеку длины волны.
Теодору Майману, калифорнийскому физику, в мае 1960 года удалось претворить эту идею в жизнь. Лазер, в работе которого использовались кристалл рубина и резонатор Фабри — Перо работал импульсно, длина волны составляла 694,3 нм.
В СССР также активно велись исследования на эту тему. В 1952 году два советских академика Александр Прохоров и Николай Басов выяснили, что возможно создание лазера, который будет работать на аммиаке. В 1954 году американец Чарлз Таунс создал такой генератор и показал принцип его работы.
Военные лазеры
Целеуказание и дальнометрия
Лазеры играют важнейшую роль в современных военных системах
целеуказания. Они используются для целей, что позволяет осуществлять более
точное сопровождение и поражение. Лазерные дальномеры позволяют определять
расстояние до цели, предоставляя данные, необходимые для систем целеуказания.
Оружие прямого излучения (ОПП).
Это лазерные системы, предназначенные для излучения
сфокусированной энергии, выводящей из строя или уничтожающей цели. ОПП обеспечивают
точное наведение на цель и потенциально меньший побочный ущерб по сравнению с
обычным оружием. Они могут применяться против различных угроз, включая
беспилотники, ракеты и артиллерийские снаряды.
Боеприпасы с лазерным наведением
Бомбы и ракеты с лазерным наведением используют лазеры для
точного отслеживания и поражения целей. Лазер направляет боеприпас к цели,
обеспечивая более высокую точность попадания по сравнению с традиционными
боеприпасами.
ПВО
Лазеры выполняют и оборонительные функции, например, в
системах противодействия ракетам с тепловым наведением. Эти системы используют
лазеры, чтобы запутать или отвести от себя приближающиеся угрозы, защищая
объект. Лазеры используются также в составе систем перехвата ракет,
предназначенных для уничтожения подлетающих средств поражения до того, как они
достигнут цели.
Связь
Военные средства связи используют лазерные технологии для
создания защищенных систем связи с высокой пропускной способностью. Оптическая
связь в свободном пространстве (FSO) использует лазерные лучи для передачи
данных между платформами, обеспечивая безопасный и защищенный канал связи.
Ослепители
Это лазеры, предназначенные для временного ослепления или
дезориентации целей без нанесения им постоянного вреда. Они используются как в
противопехотных, так и в противосенсорных системах, препятствуя эффективному
поражению целей противника.
Системы LIDAR
Вооруженные силы используют системы LIDAR (Light Detection
and Ranging) для решения различных задач, включая картографирование местности и
поиск подводных лодок. Система использует лазерные импульсы для высокоточной
съемки окружающей среды.
Классификация лазеров
Существует несколько видов лазера, отличающихся друг от друга по принципу агрегатного состояния активной среды и по способу ее возбуждения. Перечислим основные.
Твердотельные лазеры
С этих лазеров все начиналось. Активная среда в них была твердой и состояла из кристаллов рубина и небольшого количества ионов хрома. Накачка осуществлялась при помощи импульсной лампы. Самый первый рубиновый лазер собрал американец Т. Майман в 1960 году.
Твердотельные лазеры также изготавливают из стекла с примесью неодима Nd, алюмоиттриевого граната Y2Al5O12 с примесью хрома и неодима — все это также вещества для активной среды твердотельного лазера.
Газовые лазеры
В газовых лазерах активная среда формируется из газов с очень низким давлением или из их смесей. Газы заполняют стеклянную трубку, в которую впаяны электроды. Американцы А. Джаван, У. Беннетт и Д. Эрриот стали первыми создателями газового лазера в 1960 году.
В качестве накачки такого лазера обычно применяют разряд электричества, производимый генератором высоких частот. Излучение газового лазера отличается своей непрерывностью. Плотность газов невысока, так что требуется довольно длинный стержень активной среды. Интенсивность излучения обеспечивается в этом случае за счет массы активного вещества.
Газодинамические, химические и эксимерные лазеры
По большому счету эти три вида можно классифицировать как газовые лазеры:
- Газодинамический лазер по принципу работы схож с реактивным двигателем. В нем по сути происходит сгорание топлива, в которое добавлены частицы газов активной среды. В процессе сгорания молекулы газов приходят в возбуждение, а потом, будучи охлажденными сверхзвуковым течением, испускают мощнейшее когерентное излучение, тем самым отдавая энергию.
- В химическом лазере импульс излучения появляется в результате химической реакции. В самом мощном лазере этого типа работает атомарный фтор в реакции с водородом.
- Работу эксимерных лазеров обеспечивают особые молекулы, которые всегда находятся в возбужденном состоянии.
Жидкостные лазеры
Первые жидкостные лазеры появились почти тогда же, когда и твердотельные — в 60-х годах XX века. Для создания активной среды в них используются разнообразные растворы органических соединений. Плотность такого вещества выше, чем у газа, хотя и ниже, чем у твердых тел.
Поэтому такие лазеры способны генерировать достаточно сильное излучение (до 20 Вт), при том что объем их активного вещества сравнительно невелик. Работать они могут и в импульсном, и в непрерывном режимах. В качестве накачки используются импульсные лампы и другие лазеры.
Полупроводниковые лазеры
В 1962 году появились и первые полупроводниковые лазеры — в результате параллельной работы нескольких ученых из США: Р. Холла, М.И. Нейтена, Т. Квиста и их групп. Теоретически работа этого лазера была обоснована ранее, в 1958 году, русским физиком Н.Г. Басовым.
В полупроводниковом лазере в качестве активной среды используется кристалл-полупроводник, например арсенид галлия GaAs. Поэтому на первый взгляд его можно было бы отнести к твердотельным лазерам. Однако он принципиально отличается тем, что излучательные переходы в нем происходят не между энергетическими уровнями атомов, а между энергетическими зонами или подзонами кристалла.
Накачка такого лазера производится постоянным электрическим током. Грани кристалла-полупроводника тщательно полируются, и из них получается отличный резонатор.
Лазеры в природе
В нашей Вселенной учеными были найдены лазеры с естественным происхождением. Существуют гигантские межзвездные облака, созданные конденсированными газами. В них инверсная заселенность образуется естественным образом. Свет ближних звезд или другие излучения в космосе выполняют роль накачки, а газовые облака сами по себе являются превосходной активной средой протяженностью в несколько сотен миллионов километров.
Возникает естественный астрофизический лазер, который не нуждается в резонаторе, — вынужденное электромагнитное излучение образуется в них самопроизвольно, как только проходит волна света.
Принцип действия[]
Физической основой работы лазера служит явление вынужденного (индуцированного) излучения. Суть явления состоит в том, что возбуждённый атом способен излучить фотон под действием другого фотона без его поглощения, если энергия последнего равняется разности энергий уровней атома до и после излучения. При этом излучённый фотон когерентен фотону, вызвавшему излучение (является его «точной копией»). Таким образом происходит усиление света. Этим явление отличается от спонтанного излучения, в котором излучаемые фотоны имеют случайные направления распространения, поляризацию и фазу.
Гелий-неоновый лазер. Светящаяся область в центре — это не лазерный луч, а свечение электрического разряда в газе, возникающее подобно тому, как это происходит в неоновых лампах. Собственно лазерный луч проецируется на экран справа в виде красной точки.
Вероятность того, что случайный фотон вызовет индуцированное излучение возбуждённого атома, в точности равняется вероятности поглощения этого фотона атомом, находящимся в невозбуждённом состоянии. Поэтому для усиления света необходимо, чтобы возбуждённых атомов в среде было больше, чем невозбуждённых (так называемая инверсия населённостей). В состоянии термодинамического равновесия это условие не выполняется, поэтому используются различные системы накачки активной среды лазера (оптические, электрические, химические и др.).
Первоисточником генерации является процесс спонтанного излучения, поэтому для обеспечения преемственности поколений фотонов необходимо существование положительной обратной связи, за счёт которой излучённые фотоны вызывают последующие акты индуцированного излучения. Для этого активная среда лазера помещается в оптический резонатор. В простейшем случае он представляет собой два зеркала, одно из которых полупрозрачное — через него луч лазера частично выходит из резонатора. Отражаясь от зеркал, пучок излучения многократно проходит по резонатору, вызывая в нём индуцированные переходы. Излучение может быть как непрерывным, так и импульсным. При этом, используя различные приборы (вращающиеся призмы, ячейки Керра и др.) для быстрого выключения и включения обратной связи и уменьшения тем самым периода импульсов, возможно создать условия для генерации излучения очень большой мощности (так называемые гигантские импульсы). Этот режим работы лазера называют режимом модулированной добротности.
Генерируемое лазером излучение является монохроматическим (одной или дискретного набора длин волн), поскольку вероятность излучения фотона определённой длины волны больше, чем близко расположенной, связанной с уширением спектральной линии, а, соответственно, и вероятность индуцированных переходов на этой частоте тоже имеет максимум. Поэтому постепенно в процессе генерации фотоны данной длины волны будут доминировать над всеми остальными фотонами. Кроме этого, из-за особого расположения зеркал в лазерном луче сохраняются лишь те фотоны, которые распространяются в направлении, параллельном оптической оси резонатора на небольшом расстоянии от неё, остальные фотоны быстро покидают объём резонатора. Таким образом луч лазера имеет очень малый угол расходимости. Наконец, луч лазера имеет строго определённую поляризацию. Для этого в резонатор вводят различные поляризаторы, например, ими могут служить плоские стеклянные пластинки, установленные под углом Брюстера к направлению распространения луча лазера.
Определение плотности мощности и энергии лазерного излучения, расчет дозы.
При определении дозы лазеротерапии учитывают длину волны, режим работы и тип лазера. Окончательное суждение о дозе определяют выходная мощность лазера, измеряемая в ВТ или мВт; диаметр пятна луча, попадающего на рану, кожу или БАТ, размер которого измеряется в сантиметрах (см), а сам облучаемый участок — в сантиметрах квадратных (см 2 ), и время (экспозиция), в течение которого происходит облучение, выражающееся в секундах (с). При БЛОК учитывают только выходную мощность лазеров, экспозицию облучения и значение энергии на выходе световода. При наружном облучении вычисляют плотность мощности и плотность энергии лазерного излучения.
Плотность мощности вычисляют путем деления величины выходной мощности лазера на площадь облучаемого участка, получая величину плотности мощности, выражаемую в Вт/см 2 или мВт/см 2 . Плотность мощности распределяется по площади пятна, вычисляемой по формулу:
где я = 3,142, а радиус (г) — половина диаметра пятна, выраженная в см. Поэтому величина плотности мощности будет обратно пропорциональна диаметру облучаемого участка. Так, при удвоении диаметра пятна при постоянной мощности лазера на выходе плотность мощности снижается на одну четверть, а при уменьшении диаметра пятна вдвое плотность мощности увеличивается в четыре раза. В целом формула плотности мощности выглядит следующим образом:
где ПМ — плотность мощности лазера, W — выходная мощность лазера в Вт или мВт, я = 3,142, г — радиус пятна.
В зависимости от энергетического уровня НИЛИ условно подразделяют на мягкое (до 4 мВт/см 2 , среднее от 4 до 30 мВт/см 2 и жесткое более 30 мВт/см 2 ). Мягкое НИЛИ обычно применяют в рефлексотерапии для воздействия на точки акупунктуры. Среднее НИЛИ используют при ЛТ и МЛТ на ожоговые раны и проекцию тех или иных органов. Применение жесткого НИЛИ в практике лечения ожогов не рекомендуется. Следует отметить, что границы между указанными уровнями НИЛИ еще достаточно условны и не имеют строгого экспериментального обоснования.
Плотность энергии (ПЭ) или доза (Д) облучения. Мощность в Вт или мВт и время облучения в с дают значения энергии на выходе, выражаемые в джоулях (Дж) или миллиджоулях (мДж), т.е.
Время облучения (t) и плотность мощности дают в произведении плотность энергии (ПЭ), выражаемую в Дж/см 2 или мДж/см 2 , т.е. ПЭ представляется следующей формулой:
Следовательно, при использовании нерасфокусированного луча в условиях БЛОК доза облучения (Д) выражается в Дж или мДж (W • t), а при облучении раны, кожи и БАТ, где учитываются ПМ и время облучения (t), доза облучения выражается в Дж/см 2 или мДж/см 2 . Суммарная доза облучения, полученная
больным, определяется умножением дозы за одну процедуру на количество (п) процедур, т.е.:
Резкость фокусировки
Длина световой волны в лазерном пучке только одна, следовательно, и цвет также один. Этот свет четко фокусируется линзой почти что полностью в одной точке.
(См. рисунок: слева — свет лазера, справа — естественный свет). Если сравнить свет лазера с естественным светом, то будет видно, что последний не способен иметь настолько резкий фокус.
Благодаря концентрации в узком луче огромной энергии лазер способен передать этот луч на гигантские расстояния, избегая рассеяния и ослабления, присущих многоцветному свету — естественному. Эти качества лазера превращают его в незаменимый инструмент для человека.
Цели измерения ППЭ
- Производственный контроль (аттестация) рабочих мест;
- Определение и/или подтверждение границ санитарно-защитных зон (ССЗ);
- Введение в пользование (сертификация) передающих радиотехнических объектов (ПРТО);
- Инженерно-экологические изыскания на земельных участках;
- Составление, переоформление/продление санитарно-эпидемиологического заключения для анализа уровней электромагнитного излучения от источников электромагнитных полей радиочастотного диапазона (ЭМП РЧ).
Источники ЭМП РЧ
- Станции сотовой связи;
- Станции спутниковой связи;
- Телестанции;
- Станции радиовещания;
- Производственное оборудование.
Периодичность плановых проверок уровней ЭМП
Плановые контрольные измерения осуществляется с периодичностью 1 раз в 3 года и не чаще, чем 1 раз в год.
Интервал может сократиться по распоряжению центра Госсанэпиднадзора. Причинами для настоящих решений станут: изменение ситуационного плана на прилегающей к исследуемому объекту территории, изменение характеристик действующего оборудования, проведение специальных мероприятий по уменьшению уровня ЭМП.
Чем вредно электромагнитное излучение
Влияние электромагнитного излучения
Организм человека и домашних животных зависит от условий среды обитания. Ежедневно человек сталкивается с работой многочисленных приборов, способных влиять на электромагнитный фон. При повышенных нормах этого фона надо применять защитные меры.
На человека в помещении могут отрицательно влиять электропроводка и электроприборы, находящиеся рядом линии электропередач, трансформаторные подстанции, передающие теле-, радиостанции. Большее воздействие может оказывать то ЭМИ, которое имеет высокие показатели при условии расположения на близком расстоянии.
Воздействие источников, генерирующих излучение, оказывает губительное действие на:
- сердце и сосуды;
- иммунную систему;
- женское и мужское половое здоровье;
- нервную и эндокринную систему.
Повышенный электромагнитный фон становится причиной утомляемости организма, вызывает заболевания крови и злокачественные опухоли. Поэтому каждый человек должен знать, как измерить электромагнитное излучение.
Применение лазеров
Свойства лазерного излучения уникальны. Это превратило лазеры в незаменимый для самых различных областей науки и техники инструмент. Кроме этого, лазеры широко используются в медицине, в быту, в индустрии развлечений, в сфере транспорта.
Технологические лазеры
- Благодаря огромной мощности лазеры непрерывного действия активно используются для того, чтобы разрезать, сваривать или спаивать детали, изготовленные из самых различных материалов. При высокой температуре лазерного излучения становится возможным сваривать даже те материалы, которые нельзя соединить между собой другими методами. Например, сваривание металла и керамики для получения нового материала — металлокерамики, обладающего уникальными свойствами.
- Для того чтобы изготовить микросхемы, используется лазерный луч, который способен сфокусироваться в одну мизерную точку, имеющую диаметр порядка микрона.
- Еще одно замечательное свойство лазерного луча — его идеальная прямота. Это позволяет использовать его как самую точную «линейку» в строительстве. Также в строительстве и геодезии при помощи импульсных лазеров производят измерения огромных расстояний на местности, засекая время, за которое световой импульс продвигается от одной точки до другой.
Лазерная связь
Появившиеся лазеры вывели на принципиально новый уровень технику связи и записи информации.
Радиосвязь, развиваясь, постепенно переходила на все более короткие длины волн, поскольку было доказано, что высокие частоты (с наименьшей длиной волны) предоставляют каналу связи наибольшую пропускную способность. Настоящим прорывом стало понимание того, что свет — это такая же электромагнитная волна, просто короче во множество десятков тысяч раз.
Следовательно, через лазерный луч возможно передавать объем информации, в десятки тысяч раз превосходящий объем, передаваемый высокочастотными радиоканалами. В результате этого были усовершенствованы различные виды связи по всему миру.
Также при помощи луча лазера записываются и воспроизводятся компакт-диски со звуками — музыкой, и изображениями — фото и фильмами. Индустрия звукозаписи, получив такой инструмент, сделала гигантский шаг вперед.
Применение лазеров в медицине
Лазерные технологии широко применяются как в хирургии, так и в терапевтических целях.
- Например, благодаря его уникальным возможностям, луч лазера возможно легко ввести сквозь глазной зрачок и «приварить» отслоившуюся сетчатку, исправить в труднодоступной области глазного дна существующие дефекты.
- В современной хирургии при сложных операциях используется лазерный скальпель, который минимизирует повреждение живых тканей.
- Лазерное излучение небольшой мощности ускоряет регенерацию поврежденных тканей. Оно также оказывает воздействие, по свойствам похожее на иглоукалывание, практикуемое восточной медициной, — лазерная акупунктура.
- В косметологии активно используются диодные и пикосекундные лазеры.
Активная среда
Для лазерного излучения необходима так называемая «активная среда». Только в ней оно может происходить. Как же создается активная среда? Прежде всего, нужно специальное вещество, которое обычно состоит из кристаллов рубина или алюмоиттриевого граната. Собственно, это вещество и есть активная среда.
Сформированный из него цилиндр или стержень вставляют в резонатор. Резонатор состоит из двух параллельных друг другу зеркал. Переднее зеркало наполовину прозрачно, а заднее не пропускает свет. Рядом с со стержнем (цилиндром) монтируется импульсная лампа. Цилиндр и импульсная лампа окружены зеркалом. Оно чаще всего изготовлено из кварца, на который нанесен слой металла. При помощи зеркала свет собирается на цилиндре.
Выводы
Мы нисколько не преувеличиваем, когда говорим, что, появившись в середине XX века, лазеры сыграли в нашей жизни такую же значимую роль, как электричество и радио. Лазер проник практически во все области деятельности человека, и если вдруг изъять его, то мир перестанет быть таким привычным и комфортным.
Даже текст этой статьи, читаемый вами сегодня с компьютера или смартфона, доступен благодаря полупроводниковым лазерам, активно используемым в новейших оптических средствах связи. Без лазеров невозможно представить компьютеры, а значит, и огромный пласт современной жизни человека. Будучи очень интересно устроенным, лазер открывает перед современной наукой новые перспективы развития.
Свойства его невероятно многогранны, и можно смело сказать, что лазерный луч «высвечивает» себе путь абсолютно во всех сферах человеческой жизни, делая ее качественнее и счастливее!