Презентация на тему «плотность потока электромагнитного излучения и свойства электромагнитных волн»

Определите отношение плотностей потока излучения электромагнитных волн

Энергия электрического и магнитного полей[]

Для электрического и магнитного полей их энергия пропорциональна квадрату напряжённости поля. Следует отметить, что, строго говоря, термин энергия электромагнитного поля является не вполне корректным. Вычисление полной энергии электрического поля даже одного электрона приводит к значению равному бесконечности, поскольку соответствующий интеграл (см. ниже) расходится. Бесконечная энергия поля вполне конечного электрона составляет одну из теоретических проблем классической электродинамики.
Вместо него в физике обычно используют понятие плотности энергии электромагнитного поля (в определенной точке пространства). Общая энергия поля равняется интегралу плотности энергии по всему пространству.

Плотность энергии электромагнитного поля является суммой плотностей энергий электрического и магнитного полей.

В системе СИ:

u=E⋅D2+B⋅H2{\displaystyle u={\frac {\mathbf {E} \cdot \mathbf {D} }{2}}+{\frac {\mathbf {B} \cdot \mathbf {H} }{2}}}

В вакууме (а также в веществе при рассмотрении микрополей):

u=εE22+B22μ=εE2+c2B22=E2c2+B22μ{\displaystyle u={\varepsilon _{0}E^{2} \over 2}+{B^{2} \over {2\mu _{0}}}=\varepsilon _{0}{\frac {E^{2}+c^{2}B^{2}}{2}}={\frac {E^{2}/c^{2}+B^{2}}{2\mu _{0}}}}

где E — напряжённость электрического поля, B — магнитная индукция, D — электрическая индукция, H — напряжённость магнитного поля, с — скорость света, ε{\displaystyle \varepsilon_0} — электрическая постоянная, и μ{\displaystyle \! \mu_0} — магнитная постоянная. Иногда для констант ε{\displaystyle \varepsilon_0} и μ{\displaystyle \! \mu_0} — используют термины диэлектрическая проницаемость и магнитная проницаемость вакуума, — которые являются крайне неудачными, и сейчас почти не употребляются.

Свойства электромагнитных волн

Современные радиотехнические устройства позволяют провести очень наглядные опыты по наблюдению свойств электромагнитных волн. При этом лучше всего пользоваться волнами сантиметрового диапазона. Эти волны излучаются специальным генератором сверхвысокой частоты (СВЧ). Электрические колебания генератора модулируют звуковой частотой. Принятый сигнал после детектирования подается на громкоговоритель.

Свойство 1 — Поглощение электромагнитных волн
Если расположить рупоры друг против друга и добиться хорошей слышимости звука в громкоговорители, а затем поместить между ними диэлектрик, звук будет менее громким.
Свойство 2 — Отражение электромагнитных волн
Если диэлектрик заменить металлической пластиной, то звук перестанет быть слышимым. Волны не достигают приемника вследствие отражения. Отражение происходит под углом, равным углу падения, как и в случае световых и механических волн. Чтобы убедиться в этом, рупоры располагают под одинаковыми углами к большому металлическому листу. Звук исчезнет, если убрать лист или повернуть его.
Свойство 3 — Преломление электромагнитных волн
Электромагнитные волны изменяют свое направление (преломляются) на границе диэлектрика. Это можно обнаружить с помощью большой треугольной призмы из парафина. Рупоры располагают под углом друг к другу, как и при демонстрации отражения. Металлический лист заменяют затем призмой. Убирая призму или поворачивая ее, наблюдают исчезновение звука.
Свойство 4 — Поперечность электромагнитных волн
Поместим между генератором и приемником решетку из параллельных металлических стержней. Решетку расположим так, чтобы стержни были горизонтальными или вертикальными. При одном из этих положений, когда электрический вектор параллелен стержням, в них возбуждаются токи, в результате чего решетка начинает отражать волны, подобно сплошной металлической пластине. Когда же вектор перпендикулярен стержням, токи в них не возбуждаются и электромагнитная волна проходит через решетку.

Чем вредно электромагнитное излучение

Влияние электромагнитного излучения

Организм человека и домашних животных зависит от условий среды обитания. Ежедневно человек сталкивается с работой многочисленных приборов, способных влиять на электромагнитный фон. При повышенных нормах этого фона надо применять защитные меры.

На человека в помещении могут отрицательно влиять электропроводка и электроприборы, находящиеся рядом линии электропередач, трансформаторные подстанции, передающие теле-, радиостанции. Большее воздействие может оказывать то ЭМИ, которое имеет высокие показатели при условии расположения на близком расстоянии.

Воздействие источников, генерирующих излучение, оказывает губительное действие на:

  • сердце и сосуды;
  • иммунную систему;
  • женское и мужское половое здоровье;
  • нервную и эндокринную систему.

Повышенный электромагнитный фон становится причиной утомляемости организма, вызывает заболевания крови и злокачественные опухоли. Поэтому каждый человек должен знать, как измерить электромагнитное излучение.

Как появляются и распространяются электромагнитные волны

Представьте себе неподвижный точечный заряд. Пусть его окружают еще много таких зарядов. Тогда он будет действовать на них с некоторой кулоновской силой (и они на него). А теперь представьте, что заряд сместился. Это приведет к изменению расстояния по отношению к другим зарядам, а, следовательно, и к изменению сил, действующих на них. В результате они тоже сместятся, но с некоторым запаздыванием. При этом начнут смещаться и другие заряды, которые взаимодействовали с ними. Так распространяется электромагнитные взаимодействия.

Теперь представьте, что заряд не просто сместился, а он начал быстро колебаться вдоль одной прямой. Тогда по характеру движения он будет напоминать шарик, подвешенный к пружине. Разница будет только в том, что колебания заряженных частиц происходят с очень высокой частотой.

Вокруг колеблющегося заряда начнет периодически изменяться электрическое поле. Очевидно, что период изменений этого поля, будет равен периоду колебаний заряда. Периодически меняющееся электрическое поле будет порождать периодически меняющееся магнитное поле. Это магнитное поле, в свою очередь, будет создавать переменное электрическое поле, но уже на большем расстояние от заряда, и т.д. В результате появления взаимно порождаемых полей в пространстве, окружающем заряд, возникает система взаимно перпендикулярных, периодически меняющихся электрических и магнитных полей. Так образуется электромагнитная волна, которая распространяется от колеблющегося заряда во все стороны.

Электромагнитная волна не похожа на те возмущения вещественной среды, которые вызывают механические волны. Посмотрите на рисунок. На нем изображены векторы напряженности →E и магнитной индукции →B в различных точках пространства, лежащих на оси Oz, в фиксированный момент времени. Никаких гребней и впадин среды при этом не появляется.

В каждой точке пространства электрические и магнитные пол меняются во времени периодически. Чем дальше расположена точка от заряда, тем позднее ее достигнут колебания полей. Следовательно, на разных расстояниях от заряда колебания происходят с различными фазами. Колебания векторов →E и →B в любой точке совпадают по фазе.

Определение

Длина электромагнитной волны — расстояние между двумя ближайшими точками, в которых колебания происходят в одинаковых фазах.

Длина электромагнитной волны обозначается как λ. Единица измерения — м (метр).

Обратите внимание на рисунок выше. Векторы магнитной индукции и напряженности поля, являющиеся периодически изменяющимися величинами, в любой момент времени перпендикулярны направлению распространения волны

Следовательно, электромагнитная волна — поперечная волна.

Среда распространения

Среда распространения — это пространство, в котором проявляются волновые особенности электромагнитного поля. Электромагнитное поле может распространяться в следующих средах.

1. В свободном пространстве, характеризуемом диэлектрической проницаемостью $$\begin{equation} \varepsilon_0=\left(\frac{1}{36\pi}\right)\cdot{10^{-9}}\approx{8,854\cdot{10^{-12}}} \end{equation}\tag{2.1}$$

и магнитной проницаемостью $$\begin{equation} \mu_0=4\pi\cdot{10^{-7}} \end{equation}\tag{2.2}$$

2. В идеальном диэлектрике , характеризуемом относительной диэлектрической проницаемостью εr и относительной магнитной проницаемостью μr, для которого, следовательно, электрическая проницаемость $$\begin{equation} \varepsilon={\varepsilon_r}{\varepsilon_0} \end{equation}\tag{2.3}$$

а магнитная проницаемость $$\begin{equation} \mu={\mu_r}{\mu_0} \end{equation}\tag{2.4}$$

3. В средах с потерями, обусловленными наличием проводимости, характеризуемых относительной проницаемостью $$\begin{equation} \varepsilon_r^\prime=\varepsilon_r-{I}{60}{\lambda_0}{\sigma} \end{equation}\tag{2.5}$$ где λ — длина волны в вакууме. Для этих сред ε’r носит комплексный характер.

В табл. 2.1 приведены значения величин εrμr и σ для некоторых сред. Эти значения справедливы в диапазоне УКВ.

4. В средах с большой проводимостью (частный случай п. 3). характеризуемых большим значением комплексной части ε’r.

Таблица 2.1. Значения параметров εr, μr и σ для некоторых сред
Среда распространения εr μr σ
Воздух 1 ,0005 1
Вода пресная 81 1 10-3
Вода морская 80 1 4
Почва влажная 10 1 10-2
Почва сухая, песок 4 1 10-3
Скалистый грунт 10 1 10-3
Снег 1,4 1 10-3
Лед 3,2 1 10-3
Лесной массив 10 1 10-3
Городской массив 3 1 10-4

Среда распространения является однородной, если ее параметры ε, μ и σ не меняются вдоль направления распространения электромагнитной энергии. Среду распространения, для которой параметры ε, μ и σ не зависят от направления распространения электромагнитной энергии, принято называть изотропной. В противоположность этому, среду, параметры которой зависят от направления распространения волны, называют анизотропной средой.Примером последней может служить ионосфера.

Кроме того, следует отличать дисперсионные и недисперсионные среды, т. е среды, для которых параметры εr, σ и μ зависят или не зависят соответственно от частоты электромагнитного колебания. Примером дисперсионной среды также может служить ионосфера.

Плотность энергии в накопителях энергии и топливах

Общий объем и массовая плотность энергии некоторых видов топлива.

В области хранения энергии массовая плотность энергии используется вместе с объемной плотностью энергии для сравнения производительности технологий хранения. Единицей измерения, обычно используемой в этой области, является ватт-час на килограмм  : 1  Втч / кг = 3600  Дж / кг.

Чем выше плотность энергии, тем больше энергии может быть сохранено или транспортировано для данного объема или массы

Это особенно важно в области транспорта (автомобиль, самолет, ракета и т. Д.)

Следует отметить, что при выборе топлива для транспортного средства, помимо экономических аспектов, учитывается эффективность трансмиссии.

Источники энергии с более высокой плотностью образуются в результате реакций синтеза и деления. Из-за ограничений, порождаемых делением, он остается ограниченным для очень специфических приложений. С другой стороны, непрерывный синтез еще не освоен. Угля , то газ и нефть являются источниками наиболее часто используемых в энергетическом мире, даже если они имеют гораздо меньшую плотность энергии, а остальное поступает за счет сжигания биомассы , который имеет плотность энергии еще ниже.

Типичные плотности энергии

В следующем списке представлена ​​плотность энергии потенциально используемых материалов для хранения или производства энергии. В списке не учтена масса необходимых реагентов, таких как кислород для горения или вещества для аннигиляции с антивеществом . Для чтения таблицы может оказаться полезным следующее преобразование единиц измерения: 1  МДж ≈ 0,28  кВтч . Иногда необходимо вывести из энергии, высвобождаемой при сгорании обычных видов топлива, энергию, высвобождаемую при испарении водяного пара, образующегося в результате химической реакции, что может снизить значение плотности энергии с 5 до 10%.

Тип источника Реакция Удельная энергия ( кВтч / кг ) Удельная энергия

( МДж / кг )

Плотность энергии

( МДж / л )

Использует
Антивещество Аннигиляция материя-антивещество 24 965 421 631,578 = ~ 25 ТВтч / кг 89 875 517 874 = ~ 90 ПДж / кг Эксперименты, исследования и будущее использование
Дейтерий и тритий Термоядерный синтез 93 718 719 337 387 388 6 368 000 000 Производство электроэнергии (в разработке)
Плутоний-239 Ядерное деление 23 230 277 83 629 000 1 657 000 000 Производство электроэнергии (разведение)
Уран-235 Ядерное деление 22 083 333 79 500 000 1 534 000 000 Производство электроэнергии
Водород (сжатый до 700 бар) Химическая 34,1 123 5,6 Автомобильные двигатели
Бензин Химическая 13,1 47,2 34 Автомобильные двигатели
Пропан (или СНГ ) Химическая 12,8 46,4 26 год Кулинария, бытовое отопление, Автомобильные двигатели
Масло / Дизельное топливо Химическая 12,6 45,4 36,4 Автомобильные двигатели, отопление дома
Керосин Химическая 11,9 43 год 33 Авиационные двигатели
Жиры (животные или растительные) Химическая 10.2 37 Питание людей или животных, двигатели транспортных средств
Каменный уголь Химическая 6,6 24 Производство электроэнергии, домашнее отопление
Углеводы (включая сахар) Химическая 4,7 17 Питание человека или животных
Питательный белок Химическая 4.6 16,8 Питание человека или животных
Древесина Химическая 4.5 16,2 Отопление, приготовление пищи
Литий-воздушный аккумулятор Электрохимический 2,5 9 Портативные электронные устройства, электромобили (в разработке)
TNT Химическая 1.2 4.6 Взрывчатые вещества
Черный порошок Химическая 0,83 3 Взрывчатые вещества
Литиевый аккумулятор Электрохимический 0,5 1,8 4,32 Переносные электронные устройства, фонарики (неперезаряжаемые)
Литий- серный аккумулятор Электрохимический 0,5 1,8 Электрические транспортные средства
Литий- ионный аккумулятор Электрохимический 0,2 0,72 0,9–2,23 Портативные электронные устройства, электромобили
Щелочная батарея Электрохимический 0,163 0,59 Переносные электронные устройства, фонарики (неперезаряжаемые)
Суперконденсатор (графен / SWCNT) Электрический 0,155 0,56 Электромобили, регулирование мощности
Сжатый воздух (300 бар) Пневматический 0,138 0,5 0,2 Хранилище энергии
Натриево-ионный аккумулятор Электрохимический 0,101 0,367 Балансировка нагрузки, хранение энергии
Никель-металлогидридный аккумулятор Электрохимический 0,080 0,288 0,504–1,08 Портативные электронные устройства, фонарики
Суперконденсатор Электрический 0,0277 0,1 Регулировка мощности
Свинцово-кислотная батарея Электрохимический 0,0277 0,1 Запуск двигателей автомобилей
Механический 0,010 0,036-0,5 Рекуперация кинетической энергии (KERS)
Конденсатор Электрический 0,001 0,000036 Электронные схемы

Вынужденные электромагнитные колебания. Резонанс

Вынужденными электромагнитными колебаниями называют периодические изменения заряда, силы тока и напряжения в колебательном контуре, происходящие под действием периодически изменяющейся синусоидальной (переменной) ЭДС от внешнего источника:

где ​\( \varepsilon \)​ – мгновенное значение ЭДС, \( \varepsilon_m \) – амплитудное значение ЭДС.

При этом к контуру подводится энергия, необходимая для компенсации потерь энергии в контуре из-за наличия сопротивления.

Резонанс в электрической цепи – явление резкого возрастания амплитуды вынужденных колебаний силы тока в колебательном контуре с малым активным сопротивлением при совпадении частоты вынужденных колебаний внешней ЭДС с частотой собственных колебаний в контуре.

Емкостное и индуктивное сопротивления по-разному изменяются в зависимости от частоты. С увеличением частоты растет индуктивное сопротивление, а емкостное уменьшается. С уменьшением частоты растет емкостное сопротивление и уменьшается индуктивное сопротивление. Кроме того, колебания напряжения на конденсаторе и катушке имеют разный сдвиг фаз по отношению к колебаниям силы тока: для катушки колебания напряжения и силы тока имеют сдвиг фаз ​\( \varphi_L=-\pi/2 \)​, а на конденсаторе \( \varphi_C=\pi/2 \)​. Это означает, что когда растет энергия магнитного поля катушки, то энергия электрического поля конденсатора убывает, и наоборот. При резонансной частоте индуктивное и емкостное сопротивления компенсируют друг друга и цепь обладает только активным сопротивлением. При резонансе выполняется условие:

Резонансная частота вычисляется по формуле:

Важно!
Резонансная частота не зависит от активного сопротивления ​\( R \)​. Но чем меньше активное сопротивление цепи, тем ярче выражен резонанс

Чем меньше потери энергии в цепи, тем сильнее выражен резонанс. Если активное сопротивление очень мало ​\( (R\to0) \)​, то резонансное значение силы тока неограниченно возрастает. С увеличением сопротивления максимальное значение силы тока уменьшается, и при больших значениях сопротивления резонанс не наблюдается.

График зависимости амплитуды силы тока от частоты называется резонансной кривой. Резонансная кривая имеет больший максимум в цепи с меньшим активным сопротивлением.

Одновременно с ростом силы тока при резонансе резко возрастают напряжения на конденсаторе и катушке. Эти напряжения становятся одинаковыми и во много раз больше внешнего напряжения. Колебания напряжения на катушке индуктивности и конденсаторе всегда происходят в противофазе. При резонансе амплитуды этих напряжений одинаковы и они компенсируют друг друга. Падение напряжения происходит только на активном сопротивлении.

При резонансе возникают наилучшие условия для поступления энергии от источника напряжения в цепь: при резонансе колебания напряжения в цепи совпадают по фазе с колебаниями силы тока. Установление колебаний происходит постепенно. Чем меньше сопротивление, тем больше времени требуется для достижения максимального значения силы тока за счет энергии, поступающей от источника.

Явление резонанса используется в радиосвязи. Каждая передающая станция работает на определенной частоте. С приемной антенной индуктивно связан колебательный контур. При приеме сигнала в катушке возникают переменные ЭДС. С помощью конденсатора переменной емкости добиваются совпадения частоты контура с частотой принимаемых колебаний. Из колебаний всевозможных частот, возбужденных в антенне, контур выделяет колебания, равные его собственной частоте.

Резонанс может привести к перегреву проводов и аварии, если цепь не рассчитана на работу в условиях резонанса.

Установленные нормы ЭМИ для человека

Каждый орган в нашем теле вибрирует. Благодаря вибрации вокруг нас создается электромагнитное поле, содействующее гармоничной работе всего организма. Когда на наше биополе воздействуют другие магнитные поля, это вызывает в нем изменения. Иногда организм справляется с влиянием, иногда – нет. Это становится причиной ухудшения самочувствия.

Даже большое скопление людей создает электрический заряд в атмосфере. Полностью изолироваться от электромагнитного излучения невозможно. Есть допустимый уровень ЭМИ, который лучше не превышать.

Вот безопасные для здоровья нормы:

  • 30-300 кГц, возникающие при напряженности поля 25 Вольт на метр (В/м),
  • 0,3-3 МГц, при напряженности 15 В/м,
  • 3-30 МГц – напряженность 10 В/м,
  • 30-300 МГц – напряженность 3 В/м,
  • 300 МГц-300 ГГц – напряженность 10 мкВт/см2.

При таких частотах работают гаджеты, радио- и телеаппаратура.

Ток смещения

Современные представления о природе ЭМВ сводятся к тому, что переменное вихревое магнитное поле создаёт нестационарное вихревое электрическое поле, перпендикулярное магнитному. В свою очередь электрическое поле генерирует вихревое магнитное поле и т.д. Но со времен Х. Эрстеда и экспериментов Био и Савара известно, что магнитное поле создаётся электрическим током!

Исключение электрических зарядов и токов из процесса электромагнитной индукции стало для Максвелла камнем преткновения при разработке системы уравнений электродинамики. Если бы Максвелл творил в наше время, то эту систему ему вряд ли удалось написать, потому что совершенно неразрешимой показалась бы задача объяснить распространение ЭМВ в вакууме. Но во времена Максвелла считалось, что все пространство заполнено мировым эфиром, обладающим весьма неопределенными свойствами.

В 1837 году М. Фарадей обнаружил явление поляризации диэлектриков в электрическом поле и высказал мысль о возможности распространения «электрического и магнитного действия» через промежуточную материальную среду. В 1861 году, анализируя поведение диэлектрика в электрическом поле, Максвелл предположил, что взаимное смещение зарядов в молекулах диэлектрика пропорционально напряженности внешнего электрического поля E
. В современных обозначениях эта зависимость определяет электрическую индукцию D = εE
, где ε
— электрическая постоянная. При изменении электрического поля в диэлектрике кратковременно протекает ток (ток поляризации), плотность которого определяется зависимостью jсм = dD/dt = εdE/dt
. Этот ток Максвелл назвал «током смещения». Это был, хоть и кратковременный, но ток реальных зарядов, который должен был создавать магнитное поле. Это позволяло объединить плотность тока смещения jсм
с плотностью тока проводимости jпр
в общий («полный») ток. Суммарную плотность полного тока Максвелл и включил в I уравнение системы (1).

Цитирую по:

Для Максвелла «мировой эфир» не был «пустым пространством». Он полагал, что эфир, как и диэлектрик, содержит связанные электрические заряды. Таким образом, исключив заряды из закона электромагнитной индукции (II уравнение), Максвелл вынужден был ввести их в процесс распространения ЭМВ. В то время это был единственный разумный выход, позволявший сохранить идею существования электромагнитных волн. Но для этого потребовалось наделить мировой эфир свойствами диэлектрика…

На грани веков, когда создавалась теория относительности, с первым уравнением Максвелла начали происходить чудеса. Постулаты теории относительности исключали существование мирового эфира. Это понятие было безжалостно изгнано из научного обихода. Вместе с эфиром на свалку научных отбросов выплеснули и ребенка — идею Фарадея о неразрывной связи электрического поля с электрическими зарядами. Казалось бы, с исчезновением эфира должна была обрушиться вся система рассуждений, положенная Максвеллом в основу электродинамики. Но релятивисты, не решаясь обидеть ни Максвелла, ни Эйнштейна, изобрели вихревое электрическое поле. Это была «гениальная» находка, так как она избавляла индукционный процесс (а, следовательно, и ЭМВ) вообще от всяких зарядов! В пустоте не могло быть тока проводимости, поэтому первое уравнение получило форму

Таким образом, магнитное поле в ЭМВ создавалось теперь только «полем электрического смещения». Авторы этой идеи не заметили, что электрические заряды присутствуют и в параметре D
, так как по своему физическому смыслу электрическая индукция представляет собой поверхностную плотность зарядов, возникающую в диэлектрике в процессе поляризации. Без зарядов переменное электрическое поле не может ни поляризовать пустоту, ни создавать ток смещения. Отсутствующие в вакууме молекулы заменили несуществующим «вихревым электрическим полем», а производную от этого фантома назвали «током смещения в вакууме».

Во II томе Берклиевского курса физики Э. Парсел приводит любопытный анализ тока смещения в вакуумном конденсаторе. Он показывает, что ток смещения в вакууме магнитное поле… не создаёт. Напряженность магнитного поля в любой точке пространства внутри и вне конденсатора определяется суперпозицией полей от двух «полутоков» проводимости — втекающего в одну пластину конденсатора и вытекающего из другой.

Сторонники непорочности системы уравнений Максвелла утверждают, что способность изменяющегося электрического поля создавать в вакууме ток смещения без участия зарядов — это эффект релятивистский, а производную dD/dt
называют «релятивистской поправкой». Вводя в систему уравнений понятие «ток смещения», Максвелл об этом не догадывался…

Интенсивность плоской электромагнитной волны

Допустим, что плоская монохроматическая волна распространяется в вакууме по оси X. Это означает, что напряженности этой волны можно записать при помощи уравнений:

Мгновенная величина вектора Умова – Пойнтинга равна:

От полученной в (13) величины мы должны взять среднее по времени:

Наша волна распространяется в вакууме ($\epsilon=1;\ \mu=1$) и

Выражение (16) показывает, что интенсивность плоской, линейно поляризованной волны пропорциональна квадрату амплитуды напряженности поля.

  1. Для произвольной плоской волны в однородной среде при отсутствии поглощения интенсивность электромагнитной волны постоянна.
  2. В стоячей электромагнитной волне интенсивность равна нулю.
  3. Для сферической электромагнитной волны в среде без поглощения интенсивность волны изменяется только в зависимости от расстояния от ее центра ($r$) и можно считать, что:

Потоки энергии электромагнитного поля[]

Основная статья: Вектор Пойнтинга

Для электромагнитной волны плотность потока энергии определяется вектором Пойнтинга S (в российской научной традиции — вектор Умова-Пойнтинга).

В системе СИ вектор Пойнтинга равен: S=E×H{\displaystyle \mathbf {S} =\mathbf {E} \times \mathbf {H} },

— векторному произведению напряжённостей электрического и магнитного полей, и направлен перпендикулярно векторам E и H.
Это естественным образом согласуется со свойством поперечности электромагнитных волн.

Вместе с тем, формула для плотности потока энергии может быть обобщена для случая стационарных электрических и магнитных полей, и имеет совершенно тот же вид: S=E×H{\displaystyle \mathbf {S} =\mathbf {E} \times \mathbf {H} }.

Сам факт существования потоков энергии в постоянных электрических и магнитных полях, на первый взгляд, выглядит очень странно, но это не приводит к каким-либо парадоксам; более того, такие потоки обнаруживаются в эксперименте.

Определите отношение плотностей потока излучения электромагнитных волн

«Физика — 11 класс»

Излучаемые электромагнитные волны несут с собой энергию.

Плотность потока излучения

Есть поверхность площадью S, через которую электромагнитные волны переносят энергию.

Прямые линии указывают направления распространения электромагнитных волн. Это лучи — линии, перпендикулярные поверхностям, во всех точках которых колебания происходят в одинаковых фазах. Такие поверхности называются волновыми поверхностями.

Плотностью потока электромагнитного излучения I называют отношение электромагнитной энергии ΔW, проходящей за время Δt через перпендикулярную лучам поверхность площадью S, к произведению площади S на время Δt:

Фактически это мощность электромагнитного излучения (энергия в единицу времени), проходящего через единицу площади поверхности. Плотность потока излучения в СИ выражают в ваттах на квадратный метр (Вт/м 2 ). Иногда эту величину называют интенсивностью волны.

Выразим I через плотность электромагнитной энергии и скорость ее распространения с. Выберем поверхность площадью S, перпендикулярную лучам, и построим на ней как на основании цилиндр с образующей cΔt.

Объем цилиндра ΔV = ScΔt. Энергия электромагнитного поля внутри цилиндра равна произведению плотности энергии на объем: ΔW = wcΔtS. Вся эта энергия за время Δt пройдет через правое основание цилиндра. Поэтому

т. е. плотность потока излучения равна произведению плотности электромагнитной энергии на скорость ее распространения.

Точечный источник излучения

Источники излучения электромагнитных волн могут быть весьма разнообразными. Простейшим является точечный источник.

Источник излучения считается точечным, если его размеры много меньше расстояния, на котором оценивается его действие. Кроме того, предполагается, что такой источник посылает электромагнитные волны по всем направлениям с одинаковой интенсивностью. Точечный источник — это модель реального источника, как и другие модели, принятые в физике: материальная точка, идеальный газ и т. д.

Звезды излучают свет, т. е. электромагнитные волны. Так как расстояния до звезд в огромное число раз превышают их размеры, то именно звезды представляют собой лучшее реальное воплощение точечных источников.

Зависимость плотности потока излучения от расстояния до точечного источника

Энергия, которую переносят электромагнитные волны, с течением времени распределяется по все большей и большей поверхности. Поэтому энергия, передаваемая через поверхность единичной площадки за единицу времени, т. е. плотность потока излучения, уменьшается по мере удаления от источника.

Поместим точечный источник в центр сферы радиусом R. Площадь поверхности сферы S = 4πR 2 . Если считать, что источник по всем направлениям за время Δt излучает суммарную энергию ΔW, то

Плотность потока излучения от точечного источника убывает обратно пропорционально квадрату расстояния до источника.

Зависимость плотности потока излучения от частоты. Излучение электромагнитных волн происходит при ускоренном движении заряженных частиц. Напряженность электрического поля Е и магнитная индукция В электромагнитной волны пропорциональны ускорению а излучающих частиц. Ускорение при гармонических колебаниях пропорционально квадрату частоты. Поэтому напряженность электрического поля и магнитная индукция также пропорциональны квадрату частоты

Плотность энергии электрического поля пропорциональна квадрату напряженности поля. Энергия магнитного поля, как это можно показать, пропорциональна квадрату магнитной индукции. Полная плотность энергии электромагнитного поля равна сумме плотностей энергий электрического и магнитного полей.

Плотность потока излучения (I) пропорциональна четвертой степени частоты (ω).

При увеличении частоты колебаний заряженных частиц в 2 раза излучаемая энергия возрастает в 16 раз! В антеннах радиостанций поэтому возбуждают колебания больших частот: от десятков тысяч до десятков миллионов герц.

Итак, электромагнитные волны переносят энергию. Плотность потока излучения (интенсивность волны) равна произведению плотности энергии на скорость ее распространения. Интенсивность волны пропорциональна четвертой степени частоты и убывает обратно пропорционально квадрату расстояния от источника.

Электромагнитные волны. Физика, учебник для 11 класса — Класс!ная физика

Источник

Понравилась статья? Поделиться с друзьями:
Журнал «Наш дворик»
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: