Единицы измерения
Чтобы измерить плотность потока электромагнитного излучения, можно использовать различные приборы, такие как пириометр, пироловольтметр, ультравиолетовый радиполюсиметр и другие. Эти приборы позволяют точно измерить плотность потока электромагнитного излучения в определенной точке или на определенной площади.
Однако, приборы для измерения плотности потока электромагнитного излучения могут быть дорогими и не всегда доступными. В некоторых случаях можно использовать более простые и недорогие методы, такие как использование светочувствительных устройств или специальных пленок, которые меняют свой цвет или структуру под воздействием электромагнитного излучения.
Плотность потока излучения
Электромагнитные волны переносят энергию из одних участков пространства в другие. Перенос энергии осуществляется вдоль лучей
— воображаемых линий, указывающих направление распространения волны (мы не даём строгого определения понятия луча и надеемся на ваше интуитивное понимание, которого пока будет вполне достаточно).
Важнейшей энергетической характеристикой электромагнитных волн служит плотность потока излучения.
Представим себе площадку площадью , расположенную перпендикулярно лучам. Допустим, что за время волна переносит через эту площадку энергию . Тогда плотность потока излучения
определяетcя формулой:
(3)
Иначе говоря, плотность потока излучения — это энергия, переносимая через единичную площадку (перпендикулярную лучам) в единицу времени; или, что то же самое — это мощность излучения, переносимая через единичную площадку. Единицей измерения плотности потока излучения служит Вт/м2.
Плотность потока излучения связана простым соотношением с плотностью энергии электромагнитного поля.
Фиксируем площадку , перпендикулярную лучам, и небольшой промежуток времени . Сквозь площадку пройдёт энергия:
(4)
Эта энергия будет сосредоточена в цилиндре с площадью основания и высотой (рис. 6
), где — скорость электромагнитной волны.
Рис. 6. К выводу формулы (6)
Объём данного цилиндра равен: . Поэтому если — плотность энергии электромагнитного поля, то для энергии получим также:
(5)
Приравнивая правые части формул (4)
и (5)
и сокращая на , получим соотношение:
(6)
Плотность потока излучения характеризует, в частности, степень воздействия электромагнитного излучения на его приёмники; когда говорят об интенсивности
электромагнитных волн, имеют в виду именно плотность потока излучения.
Интересным является вопрос о том, как интенсивность излучения зависит от его частоты.
Пусть электромагнитная волна излучается зарядом, совершающим гармонические колебания вдоль оси по закону . Циклическая частота колебаний заряда будет в то же время циклической частотой излучаемой электромагнитной волны.
Для скорости и ускорения заряда имеем: и . Как видим, . Напряжённость электрического поля и индукция магнитного поля в электромагнитной волне пропорциональны ускорению заряда: и . Стало быть, и .
Плотность энергии электромагнитного поля есть сумма плотности энергии электрического поля и плотности энергии магнитного поля: . Плотность энергии электрического поля, как мы знаем, пропорциональна квадрату напряжённости поля: . Аналогично можно показать, что . Следовательно, и , так что .
Согласно формуле (6)
плотность потока излучения пропорциональна плотности энергии: . Поэтому . Мы получили важный результат: интенсивность электромагнитного излучения пропорциональна четвёртой степени его частоты
.
Другой важный результат заключается в том, что интенсивность излучения убывает с увеличением расстояния до источника
. Это понятно: ведь источник излучает в разных направлениях, и по мере удаления от источника излучённая энергия распределяется по всё большей и большей площади.
Количественную зависимость плотности потока излучения от расстояния до источника легко получить для так называемого точечного источника излучения.
Точечный источник излучения
— это источник, размерами которого в условиях данной ситуации можно пренебречь. Кроме того, считается, что точечный источник одинаково излучает во всех направлениях.
Конечно, точечный источник является идеализацией, но в некоторых задачах эта идеализация отлично работает
Например, при исследовании излучения звёзд их вполне можно считать точечными источниками — ведь расстояния до звёзд настолько громадны, что их собственные размеры можно не принимать во внимание
На расстоянии от источника излучённая энергия равномерно распределяется по поверхности сферы радиуса . Площадь сферы, напомним, . Если мощность излучения нашего источника равна , то за время через поверхность сферы проходит энергия . С помощью формулы (3)
получаем тогда:
Таким образом, интенсивность излучения точечного источника обратно пропорциональна расстоянию до него
.
Формула зависимости плотности потока излучения от расстояния до источника
§ 50 ПЛОТНОСТЬ ПОТОКА ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ
Излучаемые электромагнитные волны несут с собой энергию.
Плотность потока излучения. Рассмотрим поверхность площадью S, через которую электромагнитные волны переносят энергию. На рисунке 7.5 изображена такая площадка.
Прямые линии указывают направления распространения электромагнитных волн. Это лучи —линии, перпендикулярные поверхностям, во всех точках которых колебания происходят в одинаковых фазах. Такие поверхности называются волновыми поверхностями (см. § 46). Плотностью потока электромагнитного излучения / называют отношение электромагнитной энергии
Фактически это мощность электромагнитного излучения (энергия в единицу времени), проходящего через единицу площади поверхности. Плотность потока излучения в СИ выражают в ваттах на квадратный метр (Вт/м 2 ). Иногда эту величину называют интенсивностью волны.
Выразим I через плотность электромагнитной энергии и скорость ее распространения с. Выберем поверхность площадью S, перпендикулярную лучам, и построим на ней как на основании цилиндр с образующей c
т. е. плотность потока излучения равна произведению плотности электромагнитной энергии на скорость ее распространения.
Найдем зависимость плотности потока излучения от расстояния до источника. Для этого надо ввести еще одно новое понятие.
Точечный источник излучения. Источники излучения электромагнитных волн могут быть весьма разнообразными. Простейшим является точечный источник.
Источник излучения считается точечным, если его размеры много меньше расстояния, на котором оценивается его действие. Кроме того, предполагается, что такой источник посылает электромагнитные волны по всем направлениям с одинаковой интенсивностью. Точечный источник — такая же идеализация реальных источников, как и другие модели принятые в физике: материальная точка, идеальный газ и т. д.
Звезды излучают свет, т. е. электромагнитные волны Так как расстояния до звезд в огромное число раз превы шают их размеры, то именно звезды представляют собой лучшее реальное воплощение точечных источников.
Зависимость плотности потока излучения от расстояния до точечного источника. Энергия, которую переносят электромагнитные волны, с течением времени распределяется по все большей и большей поверхности. Поэтому энергия, передаваемая через поверхность единичной площадки за единицу времени, т. е. плотность потока излучения, уменьшается по мере удаления от источника.
Поместим точечный источник в центр сферы радиусом R. Площадь поверхности сферы S = 4
Плотность потока излучения от точечного источника убывает обратно пропорционально квадрату расстояния до источника.
Зависимость плотности потока излучения от частоты. Излучение электромагнитных волн происходит при ускоренном движении заряженных частиц (см. § 48). Напряженность электрического поля
Плотность энергии электрического поля пропорциональна квадрату напряженности поля. Энергия магнитного поля, как это можно показать, пропорциональна квадрату магнитной индукции. Полная плотность энергии электромагнитного поля равна сумме плотностей энергий электрического и магнитного полей. С учетом формулы (7.2) плотность потока излучения
Плотность потока излучения пропорциональна четвертой степени частоты.
При увеличении частоты колебаний заряженных частиц в 2 раза излучаемая энергия возрастает в 16 раз! В антеннах радиостанций поэтому возбуждают колебания больших частот: от десятков тысяч до десятков миллионов герц.
Электромагнитные волны переносят энергию. Плотность потока излучения (интенсивность волны) равна произведению плотности энергии на скорость ее распространения. Интенсивность волны пропорциональна четвертой степени частоты и убывает обратно пропорционально квадрату расстояния от источника.
Мякишев Г. Я., Физика. 11 класс : учеб. для общеобразоват. учреждений : базовый и профил. уровни / Г. Я. Мякишев, Б. В. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. — 17-е изд., перераб. и доп. — М. : Просвещение, 2008. — 399 с : ил.
Планирование по физике, учебники и книги онлайн, курсы и задачи по физике для 11 класса скачать
Если у вас есть исправления или предложения к данному уроку, напишите нам.
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь — Образовательный форум.
Фотометрические величины
Наряду с энергетическими характеристиками важную роль в науке, технике и практической деятельности играют фотометрические характеристики, описывающие видимое излучение, т. е. ту часть спектра электромагнитных волн, которая воспринимается нашим глазом. Так, с потоком излучения непосредственно связана субъективная характеристика света — световой поток: мощность оптического излучения, оцениваемая по вызываемому им световому ощущению. Световой поток обозначается буквой Фv. Единицей светового потока в СИ служит люмен (лм).
Важнейшая характеристика любого источника света — сила света Iv. Она определяется отношением светового потока Фv к телесному углу W, внутри которого этот поток распространяется:
Iv = ФvW.
Так как телесный угол вокруг точки равен 4p, то сила света точечного источника определяется из соотношения:
Iv = Фv4p
В Международной системе единиц единица силы света — к а н д е л а (кд) — является основной. Кандела равна силе света в заданном направлении источника, испускающего монохроматическое излучение частотой 5,40*1014 Гц, энергетическая сила света которого в этом направлении составляет 1,683 Вт/ср. Заметим, что данная частота соответствует максимальной чувствительности человеческого глаза, т. е. длине волны в вакууме, равной 555 нм.
Все остальные фотометрические единицы выражаются через канделу. Так, люмен равен световому потоку, испускаемому точечным источником силой света 1 кд в телесном угле, равном 1 ср.
Пусть на некоторую поверхность падает световой поток Ф. Очевидно, чем больше площадь этой поверхности, тем меньшая часть светового потока попадает на каждый участок, тем темнее этот участок. Освещенность Evсвязывает световой поток с площадью той поверхности, на которую этот поток падает. Освещенность в данной точке поверхности равна отношению светового потока, падающего на элемент поверхности, к площади этого элемента:
Ev = DФv/DS
Единица освещенности в СИ — л ю к с (лк) — равен освещенности поверхности площадью 1 м2 при падающем на нее световом потоке1лм, равномерно распределенном по этой поверхности.
Источники
Крабовидная туманность — остаток сверхновой звезды, вспышка которой наблюдалась в 1054 году. Сама туманность — это рассеянная в космосе оболочка звезды, а ее ядро сжалось и образовало сверхплотную вращающуюся нейтронную звезду диаметром около 20 км .Вращение этой нейтронной звезды отслеживается по строго периодическим колебаниям ее излучения в радиодиапазоне. Но пульсар излучает также в видимом и рентгеновском диапазонах. В рентгене телескоп «Чандра» сумел получить изображение аккреционного диска вокруг пульсара и небольших джетов, перпендикулярных его плоскости (ср. Аккреционный диск вокруг сверхмассивной черной дыры). |
Аккреционный диск в тесной двойной системе (рис. художника
)
Видимая поверхность Солнца разогрета примерно до 6 тысяч градусов, что соответствует видимому диапазону излучения. Однако корона, окружающая Солнце, разогрета до температуры более миллиона градусов и потому светится в рентгеновском диапазоне спектра.Данный снимок сделан во время максимума солнечной активности, которая меняется с периодом 11 лет. Сама поверхность Солнца в рентгене практически не излучает и потому выглядит черной. В период солнечного минимума рентгеновское излучение Солнца значительно снижается. Изображение получено японским спутником Yohkoh («Солнечный луч»), известным также как Solar-A, который работал с 1991 по 2001 год. |
Как измерить плотность потока
Прямой метод измерения плотности потока основан на использовании датчика, способного измерить энергию излучения, падающего на него. Датчик может быть выполнен на основе различных принципов, таких как фотодиоды, фототранзисторы или фотоприемники. Датчик размещается в том месте, где требуется измерение плотности потока, и регистрирует энергию излучения, позволяя определить значение плотности потока.
Косвенные методы измерения плотности потока могут включать использование спектрометров, которые позволяют анализировать распределение энергии излучения по различным частотам или длинам волн. Спектрометр обычно содержит оптическую систему, которая разделяет излучение на компоненты различных длин волн, и детектор, который измеряет интенсивность каждой из компонент.
Еще одним методом измерения плотности потока может быть использование калиброванного источника излучения. Этот метод предполагает сравнение излучения неизвестной плотности потока с излучением, известной плотности потока. Путем сравнения интенсивности излучений можно определить значение плотности потока.
Иногда также применяются методы визуализации плотности потока, такие как использование тепловизоров или специальных покрытий, чувствительных к излучению. Эти методы позволяют получить качественное представление о распределении плотности потока электромагнитного излучения в пространстве.
Важно отметить, что для получения точных измерений плотности потока необходимо учитывать факторы, такие как возможные погрешности измерительной аппаратуры, влияние окружающей среды и поверхности, на которые падает излучение, а также потери энергии излучения в процессе его передачи
Свойства электромагнитных волн
Современные радиотехнические устройства позволяют провести очень наглядные опыты по наблюдению свойств электромагнитных волн. При этом лучше всего пользоваться волнами сантиметрового диапазона. Эти волны излучаются специальным генератором сверхвысокой частоты (СВЧ). Электрические колебания генератора модулируют звуковой частотой. Принятый сигнал после детектирования подается на громкоговоритель.
Свойство 1 — Поглощение электромагнитных волн |
Если расположить рупоры друг против друга и добиться хорошей слышимости звука в громкоговорители, а затем поместить между ними диэлектрик, звук будет менее громким. |
Свойство 2 — Отражение электромагнитных волн |
Если диэлектрик заменить металлической пластиной, то звук перестанет быть слышимым. Волны не достигают приемника вследствие отражения. Отражение происходит под углом, равным углу падения, как и в случае световых и механических волн. Чтобы убедиться в этом, рупоры располагают под одинаковыми углами к большому металлическому листу. Звук исчезнет, если убрать лист или повернуть его. |
Свойство 3 — Преломление электромагнитных волн |
Электромагнитные волны изменяют свое направление (преломляются) на границе диэлектрика. Это можно обнаружить с помощью большой треугольной призмы из парафина. Рупоры располагают под углом друг к другу, как и при демонстрации отражения. Металлический лист заменяют затем призмой. Убирая призму или поворачивая ее, наблюдают исчезновение звука. |
Свойство 4 — Поперечность электромагнитных волн |
Поместим между генератором и приемником решетку из параллельных металлических стержней. Решетку расположим так, чтобы стержни были горизонтальными или вертикальными. При одном из этих положений, когда электрический вектор параллелен стержням, в них возбуждаются токи, в результате чего решетка начинает отражать волны, подобно сплошной металлической пластине. Когда же вектор перпендикулярен стержням, токи в них не возбуждаются и электромагнитная волна проходит через решетку. |
Шкала электромагнитных волн
Электромагнитные волны имеют большое разнообразие. Они классифицируются по длине волны λ или связанной с ней частоте ν. Шкала электромагнитных волн включает в себя:
- радиоволны;
- оптическое излучение;
- ионизирующее излучение.
Укажем частоты и длины указанных волн, а также их подробную классификацию в таблице.
Наименование диапазона волн | Длины волн (м) | Частоты (Гц) |
Радиоволны | ||
Инфразвук, звук | >105 | <3∙103 |
Сверхдлинные волны (СДВ) | 104–105 | 3∙103–3∙104 |
Длинные волны (ДВ) | 103–104 | 3∙104–3∙105 |
Средние волны (СВ) | 102–103 | 3∙105–3∙106 |
Короткие волны (КВ) | 10–100 | 3∙106–3∙107 |
Ультракороткие (УКВ):
|
|
|
Оптические волны | ||
Инфракрасное излучение | 0,78∙10–6–10–4 | 3∙1011–4∙1014 |
Видимый свет | 0,38∙10–6–0,78∙10–6 | 4∙1014–7,5∙1014 |
Ультрафиолетовое излучение | 10–7–0,38∙10–6 | 7,5∙1011–3∙1015 |
Ионизирующее излучение | ||
Рентгеновское излучение | 5∙10–12–10–8 | 3∙1016–6∙1019 |
Гамма-излучение | <5∙10–12 | >6∙1019 |
Частоты и длины волн электромагнитного излучения видимого спектра смотрите на рисунке ниже.
Примечания[]
- ↑ ГОСТ 7601-78. Физическая оптика. Термины, буквенные обозначения и определения основных величин
-
Бухштаб М. А. Поток излучения // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Большая Российская энциклопедия, 1994. — Т. 4. — С. 94—95. — 704 с. — 40 000 экз. — ISBN 5-85270-087-8. (см. ISBN )
- ГОСТ 26148—84. Фотометрия. Термины и определения.
Шаблон:Энергетические фотометрические величины
|
Выделить Поток излучения и найти в:
|
|
|
- Страница — краткая статья
- Страница 1 — энциклопедическая статья
- Разное — на страницах: 2 , 3 , 4 , 5
- Прошу вносить вашу информацию в «Поток излучения 1», чтобы сохранить ее
Определение понятия
Электромагнитное излучение определяется как изменённое состояние электромагнитного поля. Оно порождается движением электрических зарядов и способно воздействовать на человека вдали от источника, уменьшая своё воздействие с увеличением расстояния.
Излучение представляет собой волны, которые подразделяются на следующие виды:
- радиоизлучение;
- инфракрасное;
- терагерцовое;
- ультрафиолет;
- видимый свет;
- рентген.
Первым признаком повышения нормы электромагнитного излучения в квартире или производственном помещении являются неправильная работа бытовых приборов (их поломка и сбои), помехи при воспроизведении изображения и звука на телевизоре, неправильная работа персональных компьютеров, помехи в радиосвязи.