Что такое углепластик или карбон?

Особенности и преимущества карбона. его недостатки и способы имитации

Методы изготовления

Карбонопластики, а именно так еще называют композитные материалы из переплетенных нитей углеродного волокна, могут быть изготовлены 3-мя способами:

  • метод ручной формовки;
  • способ вакуумной формовки;
  • изготовление с выпеканием в автоклавах.

Изготовление карбоновых элементов в промышленных масштабах требует дорогостоящего оборудования, поэтому в домашних условиях карбон можно произвести только методом ручной либо вакуумной формовки.

Что нужно для изготовления

Для изготовления карбона вам потребуется:

  • углеродное волокно. Различается способом плетения и плотностью, измеряющейся в граммах на метр квадратный (гр/м2);
  • разделитель (к примеру, Loctite 770 NC). Применяется для легкого разделения карбонового элемента и матрицы после высыхания. Материал наносится на матрицу детали либо горизонтальную поверхность, на которую будет укладываться лицевой слой карбонового элемента. Лицевой слой может быть только один, если на обратной стороне не требуется создание красивой карбоновой текстуры;
  • матрица. Для создания горизонтальных деталей можно использовать кусок стекла либо зеркала. Поверхность должна быть как можно ровнее, так как все дефекты покрытия отформуются на изготовленной детали;
  • эпоксидная смола (к примеру, EPR 320);
  • отвердитель к смоле (как вариант – EPH 294);
  • инструмент для выкройки углеродного волокна. Можно использовать обычные ножницы, но будьте готовы к тому, что резка волокна быстро затупит инструмент. Если планируете изготавливать карбоновые детали серийно, рекомендуем купить электроножницы (эффективность продемонстрирована на видео).

Метод ручной формовки

Методика производства достаточно проста:

  • поверхность матрицы очищается от всех загрязнений;
  • равномерно по всех поверхности, в несколько тонких слоев наносится разделитель;
  • на поверхность наносится слой приготовленной смолы;
  • укладывается слой углеродистой ткани;
  • волокно пропитывается эпоксидной смолой. Между первым слоем и матрицей, а также между последующими слоями не должно быть пузырей воздуха. Распределять смолу можно обычной кисточкой, пузыри воздуха удобно выгонять валиком;
  • накладывается следующий слой, после чего процедура повторяется до набора необходимой толщины детали;
  • после укладки финального слоя горизонтальные детали можно спрессовать ответным куском стекла либо зеркала. В таком случае обе стороны детали получат глянцевую поверхность и четкую структуру карбона.

Поскольку стоимость углеродного волокна нельзя назвать демократичной, между первым и последним слоем углеродной ткани можно укладывать стекловолокно. Стеклоткань не должна быть грубой, чтобы не нарушать финальную форму.

Метод вакуумной формовки

Помимо стандартного набора материалов и инструментов, для изготовления карбоновых элементов методом вакуумной инфузии вам потребуются:

  • жертвенная ткань;
  • проводящая сетка. Используется для распределения смолы и отвода воздуха;
  • вакуумная пленка. Использовать обычную пленку нельзя, так как она не способна выдержать высокую температуру и не обладает высокой способностью к растяжению;
  • вакуумный насос. Для изготовления небольших деталей подойдет простой одноступенчатый масляный насос;
  • герметизирующий жгут;
  • спиральная трубка для подачи смолы и забора воздуха;
  • вакуумная трубка;
  • зажимы для трубок (струбцины);
  • вакуумная ловушка. Используется в качестве уловителя эпоксидной смолы, попадание которой в вакуумный насос выведет его из строя. Соорудить ловушку можно своими руками из подручных средств.

Технология вакуумной инфузии предполагает сборку «бутерброда» из карбоновой ткани и помещения его в герметичное пространство. После укладки происходит откачка воздуха и подача к заготовке смолы. Пропитанную смолою ткань оставляют под вакуумом на 20-30 минут, герметизируя трубки подачи смолы и отбора воздуха. Для начального отвержения достаточно 24 часа и комнатной температуры, после чего деталь из карбона следует отправить на постотвержение в духовой шкаф. Расписывать метод вакуумной инфузии в деталях мы не стали, так как процесс подробно показан на видео.

Виды волокон карбона. Полотно

Волокна могут быть короткими, резаными, их называют «штапелированными», а могут быть непрерывные нити на бобинах. Это могут быть жгуты, пряжа, ровинг, которые затем используются для изготовления тканого и нетканого полотна и лент. Иногда волокна укладываются в полимерную матрицу без переплетения (UD).

Так как волокна отлично работают на растяжение, но плохо на изгиб и сжатие, то идеальным вариантом использования углеволокна является применение его в виде полотна Carbon Fabric. Оно получается различными видами плетения: елочкой, рогожкой и пр., имеющими международные названия Plain, Twill, Satin. Иногда волокна просто перехвачены поперек крупными стежками до заливки смолой. Правильный выбор полотна по техническим характеристикам волокна и виду плетения очень важен для получения качественного карбона.

В качестве несущей основы чаще всего используются эпоксидные смолы, в которых полотно укладывается послойно, со сменой направления плетения, для равномерного распределения механических свойств ориентированных волокон. Чаще всего в 1 мм толщины листа содержится 3-4 слоя .

3.Связующие

В качестве матриц (связующих) при изготовлении судовых конструкций используются преимущественно эпоксидные н полиэфирные синтетические смолы .

Эпоксидные смолы используются двух типов: термопласты и реактопласты. Термопласты все еще находятся в стадии разработки из-за их высокой стоимости. Чаще всего используют смолы реактопласты, которыми пропитывают углеродистые волокна, а после подвергают нагреванию. Процесс, когда волокно и смолу соединяют в матрице, называют полимеризацией .

До момента отверждения связующее остается вязкотекучей жидкостью. В определенных условиях (при повышении температуры, добавлении иницирующих реакцию веществ и т. п.) молекулы этой жидкости взаимодействуют между собой, образуя большие пространственные молекулы, вследствие чего вся масса связующего необратимо отверждается — затвердевает.

Сравнительно новым классом термостойких высокомолекулярных соединений являются полиамидные смолы. Их главное отличие от полиэфирных и эпоксидных смол заключается в более высоких механических характеристиках и большей стойкости к окислению при высоких температурах (после отверждения). Однако применение полиамидных смол требует разработки специальной технологии нзготовлення ПКМ. Основные характеристики перечисленных смол приведены в табл. 1 .

Применение необычной ткани

Изначально карбон материал задумывался для космической сферы. Но вскоре углеродное волокно оказалось незаменимым в других областях. Сегодня карбон применяется практически во всех сферах, где требуются особо прочные и надежные материалы.

Основные области использования ткани карбон:

  • авиационная промышленность;
  • изготовление деталей для спортивных машин;
  • энергетика;
  • теплоизоляционная продукция;
  • производство медтехники;
  • спортивное оборудование, снаряжение;
  • строительство.

Благодаря уникальной гибкости, ткань удобна для раскроя, резки, пропитки различными составами. Заготовки из карбона поддаются шлифовке, полировке и окрашиванию. Ткань применяется для изготовления промышленных и самодельных вещей.

Чтобы сделать карбон, используют несколько способов

Выше мы рассмотрели, как делают карбоновые нити, а также поговорили о вариантах плетения, которые нужны, чтобы создать из них полотно. Дальше из карбона нужно сделать готовую объёмную деталь для современного автомобиля, велосипеда и так далее. Для этого используют три способа.

Прессование. Это чуть ли не самый простой способ создать деталь из карбона. В его рамках полотно выкладывают в специальную форму, а потом пропитывают эпоксидной или полиэфирной смолой. После этого лишнюю пропитку попросту вытесняют чем-то вроде пресса или используют для этого вакуумные машины. Когда смола застывает, получается необходимая деталь. Смола в этом случае должна пройти по дороге полимеризации. Чтобы ускорить этот процесс, можно использовать повышенный температурный режим. На выходе обычно получается полая деталь, которую называют листовым углепластиком.

Формование. Для этого способа работы с углеволокном понадобится макет готового изделия, который также называют матрицей. Её обычно делают из алебастра, гипса или монтажной пены. На неё накладывается пропитанное смолой полотно из карбона, а потом оно прокатывается специальными валиками, чтобы убрать весь воздух между материалом и заготовкой — это может происходить как в холодном состоянии, так и в горячем. После этого, как и в предыдущем случае, нужно дождаться, чтобы смола высохла. Затем готовое изделие можно отделять от заготовки и начинать сначала.

Намотка. Этот вариант работы с карбоновым волокном применяется только для создания труб и других аналогичных деталей. В данном случае оно всё так же пропитывается специальной смолой, а потом наматывается на заготовку соответствующей формы

Важно понимать, что и в этом случае, и в двух других, может быть не один слой волокна, а несколько. Как мы уже отмечали выше, если одновременно использовать карбон разного плетения, можно добиться оптимальных показателей по прочности, упругости и пластичности — это очень важно. Плюс ко всему, указанные операции обычно происходят не вручную, а на заводах в промышленных масштабах

Плюс ко всему, указанные операции обычно происходят не вручную, а на заводах в промышленных масштабах.

4. Обработка / резка

Углеродное волокно из-за его низкой плотности — это материал, который можно легко обрабатывать с помощью станков с ЧПУ или ручных инструментов, включая угловую шлифовальную машину или дремель.

Углеродное волокно — это материал, который может быть легко обработан машиной с ЧПУ. На фотографии изображена татуировочная машина, изготовленная из углеродного волокна.

Хотя высококачественные конструкции из углеродного волокна, полученные вакуумным методом (смола инфузия, препрег), могут быть нарезаны резьбой, где требуется много резьбовых соединений, вместо этого используются специальные вставки.

Алюминиевые элементы чаще всего свариваются, заклепываются или со вставками. С углеродным волокном склеивание используется чаще всего, при необходимости усиливая заклепки и вкладыши. Современные эпоксидные клеи обеспечивают прочность сцепления, аналогичную сварке.

Интересно, что Ferrari постепенно внедряет новые технологии, которые заменили сварку алюминия склеиванием с использованием эпоксидных клеящих веществ. В настоящее время Ferrari 458 Italia имеет 70 м сварных швов и 8 м клея . Главный инженер Ferrari Moruzzi ожидает, что в будущем, из-за смены производственных процессов, кузовы автомобилей будут включать более склеиваемое соединение, чем сварка. Для Ferrari это возможность использовать другие алюминиевые сплавы, которые обеспечивают улучшенную производительность, но не могут быть сварены.

При сравнении склеивания со сваркой обратите внимание, что для склеивания требуется простая технология (хотя необходимы ноу-хау и опыт). Технология склеивания широко используется в авиационной промышленности для снижения веса и, в то же время, снижения расхода топлива

Технология склеивания широко используется в авиационной промышленности для снижения веса и, в то же время, снижения расхода топлива.

Однако склеивание имеет некоторые недостатки, включая подготовку поверхности или время, необходимое для склеивания адгезионного покрытия. Во многих случаях компоненты, которые могут подвергаться воздействию (например, в автомобильной аварии), усилены специальными вставками для противодействия внезапной разрывной нагрузке.

Технология связывания будет использоваться чаще из-за разработки более мощных адгезивов и повышения осведомленности о ее преимуществах и возможных возможностях.

Применение углепластиков

Углепластик (карбон) имеет невероятно широкую сферу применения. Углеродные материалы и изделия из них можно встретить в самых разнообразных отраслях промышленности.

В строительстве, например, углеродные ткани применяются в Системе внешнего армирования. Использование углеродной ткани и эпоксидного связующего при ремонте несущих конструкций (мостов, промышленных, складских, жилых зданий) позволяет проводить реконструкцию в сжатые сроки и со значительно меньшими трудозатратами по сравнению с традиционными способами. При этом, хотя срок ремонта снижается в разы, срок службы конструкции увеличивается также в несколько раз. Несущая способность конструкции не просто восстанавливается, но и увеличивается в несколько раз.

В авиации углеродные материалы используются для создания цельных композитных деталей. Сочетание легкости и прочности получаемых изделий позволяет заменить алюминиевые сплавы углепластиковыми. Композитные детали, при их весе в 5 раз меньшем, чем аналогичных алюминиевых, обладают большей прочностью, гибкостью, устойчивостью к давлению и некоррозийностью.

В атомной промышленности углепластики используются при создании энергетических реакторов, где основным требованием к используемым материалам является их стойкость к высоким температурам, высокому давлению и радиационная стойкость

Кроме этого, в атомной отрасли особое внимание отдается общей прочности внешних конструкций, поэтому Система внешнего армирования также имеет обширное применение

В автомобилестроении карбон (или углепластик) используется для производства как отдельных деталей и узлов, так и для автомобильных корпусов целиком. Высокое отношение прочности к весу позволяет создавать безопасные, и в то же время экономичные автомобили: снижение веса автомобиля за счет углепластиков на 30 % позволяет снизить выброс CO2 в атмосферу на 16% (!), благодаря снижению расхода топлива в несколько раз.

В гражданской аэрокосмической отрасти композиционные материалы занимают очень прочные позиции. Высокие нагрузки космических полетов ставят соответствующие требования и материалам, которые используются при производстве деталей и узлов. Углеродные волокна и материалы из них, а также из карбидов работают в условиях высоких температур и давления, при высоких вибрационных нагрузках, низких температурах космического пространства, в вакууме, в условиях радиационного воздействия, а также воздействия микрочастиц и т.п.

В судостроении высокая удельная прочность, коррозионная стойкость, низкая теплопроводность, немагнитность и высокая ударостойкость делают углепластики лучшим материалом для проектирования и создания новых материалов и конструкций из них. Возможность сочетать в одном материале высокую прочность и химическую инертность, а также вибро-, звуко- и радиопоглощение обуславливает выбор именно этого материала для изготовления конструкций различных видов гражданских судов.

Одной из наиболее значимых областей применения углеродных материалов в мировой практике является ветроэнергетика. В нашей стране эта отрасль находится, по сути, в стадии зарождения, в то время как во всем мире ветряки появляются и в незаселенных районах, и в прибрежных зонах, и на морских платформах. Легкость и непревзойденные показатели прочности на изгиб углепластиков позволяют создавать более длинные лопасти, которые, в свою очередь, обладают большей энергопроизводительностью.

В железнодорожной отрасли углепластики имеют широкое применение. Легкость и прочность материала позволяет облегчить конструкцию железнодорожных вагонов, снизив тем самым общий вес составов, что позволяет в дальнейшем как увеличивать их длину, так и улучшать скоростные характеристики. В то же время углепластики могут использоваться и при строительстве железнодорожного полотна и прокладке железнодорожных проводов: высокие показатели прочности на изгиб позволяют увеличивать длину проводов, сокращая необходимое количество опор и в то же время снижая риск их провисания.

Композиционные материалы интенсивно входят в привычный мир каждого человека. Из них создаются многие товары народного потребления: предметы интерьера, детали бытовых приборов, спортивная экипировка и инвентарь, детали ЭВМ и многое другое .

Применение углеродных волокон. Усиление углеродным волокном. Прочность углеродных волокон:

– строительство: углеродная композитная арматура, фибра в бетон, фибра в асфальт, системы внешнего армирования. Например, использование системы внешнего армирования на основе углеродного волокна увеличивает грузоподъемность несущих конструкций (мостов, промышленных, складских, жилых зданий) до 4 раз, сокращает время ремонта строительных сооружений и трудозатраты в 10 раз, срок службы конструкции увеличивается также в несколько раз;

– авиация. Например, создание цельных композитных деталей. Сочетание легкости и прочности получаемых изделий позволяет заменить алюминиевые сплавы углепластиковыми. Композитные детали, при их весе в 5 раз меньшем, чем аналогичных алюминиевых, обладают большей прочностью, гибкостью, устойчивостью к давлению и некоррозийностью. Использование композитов в конструкции авиалайнера позволяет снизить его вес на 15-30%, что позволяет сэкономить расход топлива и улучшить экологические показатели;

– атомная промышленность.  Углеродное волокно используются при создании энергетических реакторов, где основным требованием к используемым материалам является их стойкость к высоким температурам, высокому давлению и радиационная стойкость

Кроме этого, в атомной отрасли особое внимание отдается общей прочности внешних конструкций, поэтому система внешнего армирования также имеет обширное применение;

– автомобилестроение. Карбон (или углепластик) используется для производства как отдельных деталей и узлов, так и для автомобильных корпусов целиком. Высокое отношение прочности к весу позволяет создавать безопасные, и в то же время экономичные автомобили: снижение веса автомобиля за счет углепластиков на 30 % позволяет снизить выброс CO2 в атмосферу на 16% (!), благодаря снижению расхода топлива в несколько раз;

– гражданская аэрокосмическая отрасль;

– судостроение. Углеродное волокно является лучшим материалом для проектирования и создания новых материалов и конструкций из них различных видов гражданских судов. Низкий удельный вес углепластика позволяет увеличить скорость катера в 2-3 раза;

– ветроэнергетика. Углепластики позволяют создавать более длинные лопасти, которые, в свою очередь, обладают большей энергопроизводительностью;

– железнодорожная отрасль. Улепластики позволяют облегчить конструкцию железнодорожных вагонов, снизив тем самым общий вес составов, что позволяет в дальнейшем как увеличивать их длину, так и улучшать скоростные характеристики. В то же время углепластики могут использоваться и при строительстве железнодорожного полотна и прокладке железнодорожных проводов, сокращая необходимое количество опор и в то же время снижая риск их провисания;

– электроэнергетике. Например, композитный сердечник в 4,7 раза легче стального и в 2 – 2,5 раза прочнее;

– в быту. Углеродное волокно и композиционные материалы интенсивно входят в привычный мир каждого человека. Из них создаются многие товары народного потребления: предметы интерьера, детали бытовых приборов, спортивная экипировка и инвентарь, детали ЭВМ и многое другое.

Как возможно научиться писать тексты и зарабатывать на этом удаленно? Например, можете пройти курс «Копирайтинг от А до Я», который подойдет даже начинающим авторам.

Другие записи:

карта сайтакарбоновая углеродная тканьприменение купить кабель нагревательное однонаправленное углеродное волокно производство в россии цена обогрев для обогрева инкубатора производитель из пропиленового волокна применение свойства карбон углетканьпроизводство оборудование изготовление технология получение пленка теплый пол сетка велосипед картридж ммв трубка стоимость автомобили удочка греющий нагревательный кабель из сырье для углеродного волокна в россии купить нагревателькачество прочность использование композиционные материалы на основе оборудование для производства углеродных волокон тканьусиление нить углеродным волокномкак клеить пластик нагревательный элемент углеродное волокно купить украина в москве обогрев киевактивированные углеродные волокна 3932углеродное волокно что это производство Россия купить в москве для обогрева усиление ткань материал кабель получение производство теплый пол свойства пропитка применение нить композит карбон удочка технология велосипед пленка качество

Коэффициент востребованности
1 302

Вы слышали про углепластик или карбон?

Углепластик, или карбон (от англ. carbon), — это современный, легкий, но очень прочный материал, применяемый в аэрокосмической отрасли, и незаменимый во многих отраслях промышленности (производство спортивного инвентаря, медицинского оборудования, автомобилестроение и так далее). Благодаря возможности его переработки и технологии производства карбоновые детали могут иметь различную форму и габаритные размеры. 

На стадии проектирования (расчета на прочность композитов) задаются параметры будущего материала, и за счет определенной ориентации волокон в полимерной матрице, например, в эпоксидной смоле, достигается оптимальное соотношение веса и прочности. Карбон используется в тех изделиях, где его отношения веса к прочности имеет существенное значение. Это в свою очередь повышает экономическую выгоду, потому что при сочетании в себе множества достоинств данный материал стоит недешево, что связано с особенностями технологии его производства и немалой долей ручного труда, непосредственно в процессе изготовления деталей из карбона. Некоторые изделия из углепластика нелегко массово производить и поэтому такое производство обходится очень дорого. Если бы можно было сказать, что углеродное волокно имеет какие-либо недостатки, это были бы издержки производства.

Этот материал стал настолько популярен, что существует не мало других синтетических материалов, которые имитируют настоящее углеволокно. Тем не менее, имитации часто представляют собой только пластик, выполненный в виде структуры углеродного волокна или различные пленки. Carbon Composites использует только высококачественные углеткани.

Как получают углеродное волокно ?

Углеродные волокна изготавливаются путем термической обработки тончайших нитей углерода с последующей карбонизацией (т. е. нагрев в азотной среде) и графитизацией (т. е. насыщение углеродом для повышения прочности). Углеродные ткани (углеткани) получают путем плетения нитей или лент.

А то, что обычно называют углепластик или карбон, представляет собой материал, состоящий из углеродных тканей, лент, волокон, и при соединении с полимерной матрицей (эпоксидной смолой или другими полимерами) под действием тепла, давления и/или в вакууме образуется композитный материал, который является одновременно прочным и легким. Это делает его особенным.

Изделия из карбона от компании Carbon Composites

В последние годы производство изделий из углепластика заметно выросло, и во многих отраслях всё активнее применяется этот по-настоящему уникальный материал. Покупателям компании Carbon Composites доступны изделия из карбона на заказ, выполненные из композитных материалов, максимально подходящих под выбранный проект. Вы можете заказать карбоновые детали высокого качества, обладающие всеми преимуществами данного материала и изготовленные в строгом соответствии с технологией

Немаловажное преимущество изготовления изделий карбона на заказ — в том, что они могут формоваться как единое целое, что позволяет избежать появления слабых мест в конструкции (которые неизбежно возникают в металлических конструкциях из-за формирования изгибов и соединений). Карбон позволяет создавать цельные изделия, в которых нагрузка равномерно распределяется по всей площади. А поверхность из многочисленных нитей в составе углепластика очень красиво переливается на свету.

А поверхность из многочисленных нитей в составе углепластика очень красиво переливается на свету.

Используйте все преимущества углепластика (карбона) — материала будущего — заказывая продукцию в компании Carbon Composites.

Технические характеристики карбоновых волокон

Для углеродных волокон основными механическими характеристиками являются предел прочности на растяжение σв, предел прочности на единицу объема, а также модуль упругости, определяющий эластичность и способность работать на изгиб.

Механические свойства сильно зависят от ориентации волокон, то есть они анизотропны, хотя в плетении Pane и Twill эффект анизотропии свойств проявляется меньше. Технические характеристики, как правило, приводятся для продольного направления.

Углеродные волокна обладают следующими механическими характеристиками по сравнению с армирующими металлическими, стекловолокном и полимерными волокнами.

Волокно (проволока)

ρ, кг/ м³

Тпл, °C

σB, МПа

σB/ρ, МПа/кг*м-3

Алюминий

2 687

660

620

2 300

Асбест

2 493

1 521

1 380

5 500

Бериллий

1 856

1 284

1 310

7 100

Карбид бериллия

2 438

2 093

1 030

4 200

Углерод

1 413

3 700

2 760

157

Стекло E

2 548

1 316

3 450

136

Стекло S

2 493

1 650

4 820

194

Графит

1 496

3 650

2 760

184

Молибден

0 166

2 610

1 380

14

Полиамид

1 136

249

827

73

Полиэфир

1 385

248

689

49

Сталь

7 811

1 621

4 130

53

Титан

4 709

1 668

1 930

41

Вольфрам

19 252

3 410

4 270

22

Например, параметры углеродных волокон Toray из полиакрилата (PAN) c высокой прочностью на растяжение High Modulus Carbon Fiber. 

Волокно (fiber)

Модуль упругости (msi)

Предел прочности (ksi)

M35J 50 683
M40J 57 398
M40J 55 640
M46J 63 611
M50J 69 597
M55J 78 583
M60J 85 569

Существует взаимосвязь — чем выше предел прочности, тем ниже модуль упругости. 

Что влияет на технические характеристики карбоновых композитов

При подборе материала очень важно найти оптимальный баланс между характеристиками, подбирая слои, направление волокна, метод плетения и плотность. Механические свойства готовых композитов определяются следующими параметрами:

  • тип карбонового волокна и смолы,
  • тип плетения, ориентация волокон, 
  • соотношение волокон (т.е. плотность полотна) и смолы в композиции,
  • плотность, однородность, пористость и пр.

Ну и не забываем про опыт и навыки работы с композитами.

Автор Ирина Химич

При копировании материалов не забывайте, что у каждого текста есть автор. Поэтому при добавлении материала на свой сайт не забывайте ставить индексируемую ссылку на первоисточник!!!

Виды карбоновой пленки

С увеличением спроса на данный тип автомобильных товаров увеличилось количество производителей. Каждый месяц выпускаются новые расцветки, но стандартных видов всего несколько.

Разновидности карбоновых пленок

Наиболее распространенным типом считается пленка 2D. Она проста в производстве и стоит недорого. Изображение напечатано на материале и визуально имитирует карбоновую поверхность. Чтобы защитить состав от быстрого износа и всевозможных повреждений, на него наносят дополнительный ламинированный слой. То есть вся технология заключается в 2D печати узора карбонового покрытия, и нанесении специального защитного слоя.

Следующий вариант пленки – карбон 3D. Как правило, данный материал используется исключительно на отдельных элементах кузова транспортного средства. Она имеет рельефную поверхность. Визуально, подобный вид изделия в точности копирует фактуру карбона благодаря трехмерному изображению.

Вдобавок, качество заготовки можно оценить наощупь. Прикасаясь к поверхности можно почувствовать отдельные микроскопические полоски. В результате получается качественная поверхность, которая может изменять оттенок при взгляде на нее под разными ракурсами.

Более высокая цена у рулонов с 4D изображением. Такой материал практически не встречается в обычных магазинах. Чтобы приобрести 4D пленку карбон для авто нужно обратиться в специализированный сервис. Как правило, такие точки продажи качественных элементов для проведения ремонта и тюнинга работают в крупных городах. Ассортимент в них всегда большой.

Существует и усовершенствованные разновидности пленки карбон – 5D и 6D. Визуально такой слой смотрится на поверхности транспортного средства немного богаче предыдущих вариантов. Хотя, состоит он из тех же компонентов:

  1. Подложка;
  2. Качественная пленка;
  3. Прочный слой защиты.

Стоит современный материал достаточно дорого. Поэтому преимущественное количество владельцев использует пленку под карбон для салона автомобилей.

Чем отличаются 2D, 3D, 4 D, 5D и 6D карбоновые пленки визуально и на ощупь смотрите в видео:

Углеродные волокона выпускаемые в настоящее время

На основе вискозных нитей и волокон изготавливают: Нити, ленты, ткани, а также дисперсный порошок из размолотых волокон — Урал , УВК , Вискум
Нетканый материал: Карбопон
Активированные сорбирующие ткани: Бусофит
Активированные сорбирующие нетканые материалы: Карбопонактив
На основе вискозных штапельных волокон: Волокна и нетканые материалы: карбонизованые — Углен и графитированые — Грален
На основе ПАН-нитей и жгутов: Ленты и ткани — ЛУ , УКН , Кулон , Элур
Активированные сорбирующие волокна и нетканые материалы: Актилен , Ликрон
дисперсный порошок из размолотых волокон: Ваулен (для медицинских целей)
На основе ПАН-волокон: Волокна и нетканые материалы: карбонизованные — Эвлон и графитированные — Конкор

Выпускают углеродные волокона и за рубежом:

  • — в США: Торнел , Целион , Фортафил
  • — в Великобритании: Модмор , Графил
  • — в Японии: Торейка , Куреха-лон

Углеродное волокно как материал основа для производства композиционных материалов

Углеродное волокно – материал, состоящий из тонких нитей диаметром от 3 до 15 микрон, образованных преимущественно атомами углерода. Атомы углерода объединены в микроскопические кристаллы, выровненные параллельно друг другу. Выравнивание кристаллов придает волокну большую прочность на растяжение и пр. свойства.

Углеродное волокно является основой для производства углепластиков (или карбона, карбонопластиков, от “carbon”, “carbone” – углерод). Углепластики – полимерные композиционные материалы из переплетенных нитей углеродного волокна, расположенных в матрице из полимерных (чаще эпоксидных) смол.

На основе углеродного волокна производят:

– композитную (углеродную) арматуру. Углеродная арматура представляет собой материал, который состоит из основы в виде углеродного волокна и связующего: термореактивной синтетической смолы. Углеродная арматура изготовляется методом пултрузии — протяжкой пропитанных связующим армирующих волокон через нагретую формообразующую фильеру;

– двунаправленные ткани: комбинированную (углеродную и арамидную) ткани, стеклоткань саржевого или полотняного переплетения, углеродную ткань саржевого или полотняного плетения, углеродную ткань-сатин;

– дизайнерские ткани;

– мультиаксиальные ткани: биаксильные ткани, квадроаксильные ткани,

– углеродное нетканое полотно. Нити углеродного волокна в однонаправленных нетканых материалах располагаются строго параллельно друг другу. Нити фиксируются стеклянной сеткой и/или эпоксидным биндером;

– однонаправленные углеродные ленты. Однонаправленные углеродные ленты – это текстиль, где свыше 75% волокон расположены в одном направлении. В качестве утка используется стекловолокно или арамидное волокно;

– препреги. Препреги — композиционные материалы-полуфабрикаты. Их получают путем пропитки армирующей волокнистой основы равномерно распределенными полимерными связующими. Пропитка осуществляется таким образом, чтобы максимально реализовать физико-механические свойства армирующего материала. Методы с использованием пропитки волокна позволяют на 30% улучшить свойства материала;

– системы внешнего армирования;

– преформу-рукав;

– фибру. Фибра – нарезанное углеродное волокно. Используется в качестве усиливающей добавки в бетон, асфальтобетон;

– прочие материалы: жгуты, углерод-углеродные композиционные материалы, фибры и т.д.

Углеродное волокно-производство

Столь высокую стоимость углеродного волокна обуславливает сложность и энергоемкость процесса его получения.  Смысл процесса состоит в поэтапной чистке углеродосодержащих нитей от ненужных атомов, оставляя в конце процесса до 99% углерода в объеме нити.

УВ получают путем термического разложения (пиролизом) исходных нитей: гидратоцеллюлозных, полиакрилонитрильных (ПАН). Так же нефтяных или каменноугольных пеков. В настоящее время, промышленное значение имеет производство УВ на базе вискозы или ПАН.

Процесс получения УВ на основе ПАН

Следует заметить, что химический состав и структура УВ зависит от состава исходного сырья.

В первую очередь, полиакриловые жгуты подвергают окислению, проводя термическую обработку на воздухе при температуре около 200 °С.

Окисленный ПАН так же представляет интерес в некоторых сферах производства как термостойкий и трудно горючий материал.

После окисления, полотно проходит через печи карбонизации (около 1500 °С) и графитизации (около 3000 °С). На этой стадии удаляются остатки водорода и гетероатомов, происходит образование двойных связей между атомами углерода. Процессы карбонизации и графитизации проводятся в инертной среде.

В завершении процесса карбонизации (в некоторых случаях стадия графитизации может исключаться) жгут имеет готовый химический состав и структуру, но проходит еще ряд этапов для повешения адгезии с матрицей:

— обработка поверхности. Поверхность карбонового полотна вследствие данной реакции становится «шероховатой». Обнажая атомы углерода и создавая свободные функциональные группы способные к ионному обмену.

— нанесение ПАВ (поверхностно активное вещество). Оно же, так называемое аппретирование. В качестве аппрета чаще наносятся эпоксидные смолы без отвердителя. Аппрет защищает от истирания в процессе хранения, транспортировки и текстильной переработки. Вытесняет из пор влагу и воздух.

Этап сушки после нанесения аппрета является завершающим этапом, после которого жгуты наматываются на бобины  (обычно массой до 8 кг).

Свойства продукта

  1. Он обладает высокой прочностью и коррозионной устойчивостью, что является двумя похвальными свойствами углеволокна армированной ткани.

  2. Высокая прочность на растяжение, лОу вес,Углеродное волокно на самом деле гораздо сильнее стали с точки зрения соотношения силы к весу, вес углеродного волокна составляет лишь около одной пятой от веса стали, так что под тем же весом углеродного волокна прочность примерно в пять раз больше, чем у стали.

  3. Низкое тепловое расширение, углеволокно имеет высокую устойчивость к температурным изменениям, что означает, что углеволокно решетка не расширяется и не сжимается при различных температурах. По этой причине он идеально подходит для установки на заводе или сборочной линии.

  4. Высокий модуль модуля

Технические данные

Материалы по теме: : категория:

100% углеволокно Пряжа (искривление): 3k углеволокно
Схема: 1 2 Соединенные Штаты америки Пряжа (weft): 3k углеволокно
Вес: 36 кг 200gsm (англ.) (англ.) Ширина: 1 мм 10- 150см
Плотность (искривление): 5/10 см Толщина: 1 мм Диаметр 0,2мм
Плотность (weft): 5/10 см Цвет: красный Черный цвет кожи
Технические данные

Материал: 1

100% углеволокно
Схема: 1 2 Соединенные Штаты америки
Вес: 36 кг 200gsm
Плотность (искривление): 5/10 см
Плотность (weft): 5/10 см
Количество нитей (искривление): 3k углеволокно
Количество нитей (weft): 3k углеволокно
Ширина: 1 мм 10- 150см
Толщина: 1 мм Диаметр 0,2мм
Цвет (Color) Черный цвет кожи
Понравилась статья? Поделиться с друзьями:
Журнал «Наш дворик»
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: