Загадочные белые карлики

Различные типы звезд во вселенной

Гигантские звезды и сверхгиганты диаграммы Герцшпрунга-Рассела

Если мы отойдем от основной последовательности, мы увидим другие сектора на диаграмме. На вершине — гиганты и сверхгиганты. Хотя они имеют ту же температуру, что и многие другие звезды главной последовательности, они имеют гораздо более высокую светимость. Это связано с размером. Эти гигантские звезды характеризуются тем, что в течение длительного времени сжигали свои запасы водорода, поэтому им пришлось начать использовать различные виды топлива, такие как гелий, для своей работы. Именно тогда яркость ослабевает, поскольку топливо не такое мощное.

Это судьба, которой принадлежит большое количество звезд, расположенных в главной последовательности. Это зависит от их массы, они могут быть гигантскими или сверхгигантскими.

Ниже главной последовательности у нас есть белые карлики. Конечным пунктом назначения большинства звезд, которые мы видим на небе, является белый карлик. На этом этапе звезда принимает очень маленький размер и огромную плотность. Со временем белые карлики двигаются все дальше и дальше вправо и вниз по диаграмме. Это потому, что он постоянно теряет яркость и температуру.

Это в основном основные типы звезд, которые появляются на этом графике

Есть некоторые текущие исследования, которые пытаются выделить и сосредоточить внимание на некоторых крайностях графика, чтобы узнать все более подробно

Надеюсь, что с помощью этой информации вы сможете больше узнать о диаграмме Герцшпрунга-Рассела и ее характеристиках.

История наблюдений за звездами

Сейчас можно легко купить телескоп и наблюдать на ночным небом или воспользоваться телескопами онлайн на нашем сайте. С древних времен звезды на небе играли важную роль во многих культурах. Они отметились не только в мифах и религиозных историях, но и послужили первыми навигационными инструментами. Именно поэтому астрономия считается одной из древнейших наук. Появление телескопов и открытие законов движения и гравитации в 17 веке помогли понять, что все звезды напоминают наше , а значит подчиняются тем же физическим законам.

Изобретение фотографии и спектроскопии в 19 веке (исследование длин волн света, исходящих от объектов) позволили проникнуть в звездный состав и принципы движения (создание астрофизики). Первый радиотелескоп появился в 1937 году. С его помощью можно было отыскать невидимое звездное излучение. А в 1990 году удалось запустить первый космический телескоп Хаббл, способный получить наиболее глубокий и детализированный взгляд на Вселенную (качественные фото Хаббла для различных небесных тел можно найти на нашем сайте).

Типы звезд: гигантские и сверхгигантские звезды

Гиганты и сверхгиганты образуются, когда у звезды заканчивается водород и начинается сжигание гелия.

Это самые большие звезды во Вселенной.

По мере того, как ядро звезды сжимается и нагревается, возникающее в результате тепло впоследствии заставляет внешние слои звезды расширяться наружу.

Звезды с малой или средней массой превращаются в красных гигантов, а звезды с большой массой, примерно в 10+ раз больше, чем Солнце, становятся красными сверхгигантами.

Звезда может сжаться и стать голубым сверхгигантом в периоды медленного синтеза.

Синий цвет обычно присутствует, когда температура распределяется по небольшой площади поверхности, что делает их более горячими.

Также могут возникать колебания между красным и синим.

Синий гигант

Голубые гиганты очень редки, потому что они развиваются только из более массивных и менее распространенных звезд, а также потому, что у них короткая жизнь.

Звезды с классами светимости III и II (яркий гигант и гигант) называются голубыми гигантами.

Их спектральные классы — O, B и A.

Термин «голубой гигант» относится к множеству звезд, находящихся на разных стадиях развития.

Это эволюционировавшие звезды, которые переместились с главной последовательности, но имеют мало общего.

Однако настоящие голубые гиганты имеют температуру выше 10 000 К.

Температура голубого гиганта может варьироваться вплоть до 33 000+ К, а светимость примерно в 1000 раз больше, чем у Солнца.

Они имеют массу от 2 до 150 масс нашего Солнца и обычно существуют от 10 до 100 миллионов лет.

Примерами голубого гиганта являются «Мейсса» и «Йота Орионис».

Синий сверхгигант

Голубые сверхгиганты также редки.

В науке они известны как сверхгиганты OB и обычно имеют классификацию светимости I и спектральную классификацию B9 или более раннюю.

Обычно они крупнее Солнца, но меньше красных сверхгигантов с массой от 10 до 100 масс Солнца.

Голубые сверхгиганты имеют температуру от 10 000 до 50 000 К и светимость от 10 000 до 1 миллиона раз больше, чем у Солнца.

Они живут очень короткой жизнью, около 10 миллионов лет.

Из-за своей массы голубые сверхгиганты быстро сжигают запасы водорода.

Некоторые звезды эволюционируют непосредственно в звезды Вольфа-Райе (Wolf-Rayet), перескакивая через обычную фазу голубого сверхгиганта.

Примерами голубого сверхгиганта являются «Ригель» и «Тау Большого Пса».

Красный гигант

Красные гиганты относятся к спектральным классам M и K, они намного меньше красных сверхгигантов и гораздо менее массивны.

Когда звезда израсходовала свой запас водорода в своем ядре, синтез прекращается, и звезда больше не создает внешнее давление, чтобы противодействовать внутреннему давлению, стягивающему ее.

Поэтому водородная оболочка вокруг ядра воспламеняется, продолжая жизнь звезды, но заставляя ее резко увеличиваться в размерах.

Это то, что создает красный гигант.

Красные гиганты могут быть в 100 раз больше, чем была звезда в фазе своей главной последовательности.

Когда это водородное топливо израсходовано, в реакциях термоядерного синтеза могут быть израсходованы дополнительные оболочки гелия и даже более тяжелых элементов.

Обычно они имеют температуру от 3300 до 5300 К и светимость от 100 до 1000 раз больше, чем у Солнца.

Они также имеют массу от 0,3 до 10 масс Солнца.

Красные гиганты живут от 0,1 до 2 миллиардов лет, прежде чем у них полностью закончится топливо и они станут белыми карликами.

Примерами красного гиганта являются «Альдебаран» и «Арктур».

Красный сверхгигант

Красные сверхгигантские звезды — это звезды, которые исчерпали свой запас водорода в своих ядрах, и поэтому их внешние слои сильно расширяются по мере того, как они эволюционируют от главной последовательности.

Они относятся к спектральным классам K и M и являются одними из самых больших звезд во Вселенной, хотя и не самыми массивными или яркими.

Они имеют температуру от 3500 до 4500 К и светимость от 1000 до 800000 раз больше, чем у Солнца.

Красные сверхгиганты имеют массу от 10 до 40 масс Солнца и живут от 3 до 100 миллионов лет.

Некоторые красные сверхгиганты, которые все еще могут создавать тяжелые элементы, в конечном итоге взрываются как сверхновые II типа.

Примерами красного сверхгиганта являются «Антарес» и «Бетельгейзе».

Желтые карликовые звезды

  • Срок службы: 4-17 миллиардов лет.
  • Эволюция: ранняя, средняя
  • Температура: 5,000 — 7,300 ° C
  • Спектральные типы: G, F
  • Яркость: 0,6 — 5,0
  • Радиус: 0,96 — 1,4
  • Масса: 0,8 — 1,4
  • Распространенность: 10%

Солнце, Альфа Центавра A и Кеплер-22 — желтые карлики. Эти звездные котлы находятся в самом расцвете сил, потому что в их ядрах сжигается водородное топливо. Это нормальное функционирование помещает их на «главную последовательность», где находится большинство звезд. Обозначение «желтый карлик» может быть неточным, поскольку эти звезды обычно имеют более белый цвет. Однако они кажутся желтыми при наблюдении через атмосферу Земли.

Оранжевый карлик по имени Эпсилон Эридана (слева) показан рядом с нашим Солнцем на этой иллюстрации.

Р.Дж. Холл через Wikimedia Commons

Различия в жизненном цикле

Погружаясь глубже в космический танец Вселенной, мы понимаем, что жизненный цикл звезд – это увлекательная история. Каждая звезда, в зависимости от ее массы, проходит уникальный путь от рождения до смерти. Гигантские звезды с их огромной массой на протяжении всего своего существования претерпевают драматические изменения. С другой стороны, история белых карликов – это история наследия; того, что остается после того, как звезда, подобная нашему солнцу, заканчивает свою жизнь.

  1. Рождение и ранняя жизнь: Звезды рождаются в туманностях, причем гигантам требуется больше массы, а белым карликам меньше. Эта начальная фаза заключается в сборе массы и запуске ядерного синтеза.
  2. Главная последовательность: Это самая продолжительная фаза жизни звезды. Для гигантов эта фаза характеризуется слиянием атомов водорода с образованием гелия.
  3. Пост-Основная последовательность: гиганты расширяются и становятся сверхгигантами. Напротив, звезды, которым суждено стать белыми карликами, разрастаются в красных гигантов и в конечном итоге сбрасывают свои внешние слои.
  4. Конец жизни: Как упоминалось, гиганты взрываются впечатляющей сверхновой. Другие звезды, сбросив свои слои, оставляют после себя свое горячее ядро – белого карлика.

Звезды красных гигантов и сверхгигантов

Как не существует абсолютно идентичных людей, так нет и одинаковых звезд во Вселенной. Среди них выделяют группу звезд-гигантов, которые излучают в тысячи раз больше света, чем Солнце. Такие объекты имеют значительные размеры (от 10 до 1 000 радиусов нашего Светила) и невысокую плотность (около 10-2 — 10-4 кг/м3). Кроме того, с поверхности ряда гигантов происходит интенсивное истечение газового вещества.

К одним из самых уникальных и интересных представителей больших звезд относятся красные гиганты. Эти звезды имеют низкую температуру. Температура красных гигантов  достигает в среднем 3 000 — 5 000С, а их радиус в сотни раз превосходит радиус Солнца. Отмечено, что светимость красных гигантов где-то в 100 раз больше, чем у нашей Звезды. Максимальное количество энергии излучения такого объекта приходится на красную и инфракрасную части спектра. Как следует из теории звездной эволюции, образование красных гигантов происходит из звезд главной последовательности после того, как в их центральной части произойдет практически полное выгорание водорода.

К тому времени, как вполне обычное светило превратится в красного гиганта, его структура успевает измениться: внутри образуется плотное, богатое гелием ядро. Вокруг ядра тонкий энерговыделяющий слой и протяженная оболочка. Масса красного гиганта составляет от 1,5 до 15 масс Солнца и плотность менее 0,001 г/см3, что намного меньше плотности нашей звезды. В астрономии к красным гигантам относятся:

  • Альдебаран;
  • Арктур;
  • Гакрукс;
  • Мира.

Среди этой категории светил встречаются особо крупные объекты, которые были выделены в отдельный класс красных сверхгигантов. Пока что таких звезд обнаружено совсем немного. Они отличаются достаточно большими размерами, а их светимость достигает 105 светимостей Солнца. Интересно, что такие объекты тяжелее нашего светила в 50 раз. Зато их радиусы достигают тысячи радиусов Солнца. Температура красного сверхгиганта 3 000 — 5 000С. Спектры этих объектов имеют молекулярные полосы поглощения, максимальное излучение приходится на спектральные области: красную, а также инфракрасную. Спектральный класс красного сверхгиганта К и М. Самым известным сверхгигантом является Бетельгейзе.

Звезды. Диаграмма Герцшпрунга-Рассела.

Сопоставление светимостей звезд с их спектральными классами впервые было сделано в начале XX века Эйнаром Герцшпрунгом и Генри Расселом, поэтому диаграмму спектр-светимость часто называют диаграммой Герцшпрунга–Рассела. На этой диаграмме по оси абсцисс откладываются спектральные классы (или эффективные температуры), по оси ординат – светимости L (или абсолютные звездные величины М). Если бы между светимостями и их температурами не было никакой зависимости, то все звезды распределялись на такой диаграмме равномерно. Но на диаграмме обнаруживаются несколько закономерностей, которые называют последовательностями.

Большинство звезд (около 90 %), располагаются на диаграмме вдоль длинной узкой полосы, называемой главной последовательностью. Она протянулась из верхнего левого угла (от голубых сверхгигантов) в нижний правый угол (до красных карликов). К звездам главной последовательности относится Солнце, светимость которого принимают за единицу. Точки, соответствующие гигантам и сверхгигантам, располагаются над главной последовательностью справа, а соответствующие белым карликам – в нижнем левом углу, под главной последовательностью. По распределению звезд в соответствии с их светимостью и температурой на диаграмме Герцшпрунга–Рассела выделены следующие классы светимости:

  • сверхгиганты – I класс светимости;
  • гиганты – II класс светимости;
  • звезды главной последовательности – V класс светимости;
  • субкарлики – VI класс светимости;
  • белые карлики – VII класс светимости.

Принято указывать класс светимости после спектрального класса звезды. Солнце – звезда G2V. В настоящее время выяснилось, что звезды главной последовательности – нормальные звезды, похожие на Солнце, в которых происходит сгорание водорода в термоядерных реакциях. Главная последовательность – это последовательность звезд разной массы. Самые большие по массе звезды располагаются в верхней части главной последовательности и являются голубыми гигантами. Самые маленькие по массе звезды – карлики. Они располагаются в нижней части главной последовательности. Параллельно главной последовательности, но несколько ниже ее располагаются субкарлики. Они отличаются от звезд главной последовательности меньшим содержанием металлов.

Выяснилось, что положение звезды на диаграмме Герцшпрунга – Рассела изменяется в зависимости от возраста звезды. Большую часть своей жизни звезда проводит на главной последовательности. В этот период ее цвет, температура, светимость и другие параметры почти не меняются. Но до того, как звезда достигнет этого устойчивого состояния, еще в состоянии протозвезды, она имеет красный цвет и в течение короткого времени большую светимость, чем будет иметь на главной последовательности.

Звезды большой массы (сверхгиганты) щедро расходуют свою энергию, и эволюция таких звезд продолжается всего сотни миллионов лет. Поэтому голубые сверхгиганты являются молодыми звездами. Стадии эволюции звезды после главной последовательности также короткие. Типичные звезды становятся при этом красными гигантами, очень массивные звезды – красными сверхгигантами. Звезда быстро увеличивается в размере, и ее светимость возрастает. Именно эти фазы эволюции отражаются на диаграмме Герцшпрунга–Рассела. В 1911–24 гг. астрономы Холм, Рассел, Герцшпрунг и Эддингтон установили, что для звезд главной последовательности существует связь между светимостью L и массой М, и построили диаграмму масса–светимость.

Термоядерный механизм излучения звезды качественно объясняет зависимость масса–светимость: чем больше масса, тем больше светимость. Действительно, при большей массе в недрах звезды достигаются более высокие температуры. Вероятность реакций синтеза возрастает, соответственно выделяется больше энергии и увеличивается светимость звезды.

Какие виды звёзд существуют

Итак, выделим основные виды звезд:

  • Светила главной последовательности — на этом этапе они проводят до 90% всей своей жизни. Главным образом, основные термоядерные реакции связаны с горением водорода. В результате чего формируется гелиевое ядро.
  • Коричневые карлики — интересный тип субзвёздных объектов. В их ядре также протекают термоядерные реакции, но основе лежит горение лёгких элементов. Например, бора, лития, бериллия или дейтерия. Поэтому тепловыделение и излучение у подобных тел быстро заканчивается. Что, соответственно, приводит к их остыванию, а затем превращению в планетоподобные объекты.
  • Красные карлики отличаются долгой продолжительностью жизни, поскольку горение водорода в них проходит медленно. Вероятно, поэтому красных карликов больше других звёздных тел во Вселенной. Хотя из-за медленных процессов и слабого излучения, они не видны с нашей планеты без специальных приборов.
  • Красные гиганты образуются после того, как сгорит весь водородный запас, что приводит к гелиевой вспышке и расширению звезды.
  • Белые карлики имеют малую массу. Можно сказать, это остаток от красных гигантов, скинувших свою оболочку. При взрыве начинается процесс горения углерода и кислорода. Светило увеличивает атмосферные границы, быстро теряет газ и превращается в белый карлик.
  • Сверхгиганты — массивный тип светил, которые из-за происходящих внутри реакций быстро покидают стадию главной последовательности. Для них характерна низкая температура, но высокий показатель светимости.
  • Переменные звёзды — это те, у которых хотя бы раз за весь жизненный цикл изменялся блеск. Чаще всего это связано с внутренними процессами. Однако и внешние факторы могут повлиять на изменение блеска. К примеру, если звёздный свет пройдёт сквозь гравитационное поле.
  • Главная последовательность
  • Коричневый карлик
  • Проксима Центавра (красный карлик)
  • Белый карлик Сириус B
  • Голубой сверхгигант Ригель
  • Красный гигант и солнце

Помимо этого, выделяют и другие виды звезд:

  • Новые звёзды — это особый тип переменных, с достаточно резким изменением блеска. Собственно говоря, скачки светимости провоцируют вспышки тела с различными амплитудами.
  • Сверхновые — это те, которые на конечном этапе эволюции взрываются. Причем их взрыв или вспышка очень мощные.
  • Гиперновые или проще говоря, большие сверхновые звёзды. После того, как источники поддержания термоядерных реакций иссякают, происходит коллапс. Что интересно, сила и мощность их неминуемого взрыва превышает обычных сверхновых приблизительно в 100 раз.
  • LBV (Яркие голубые переменные) или переменные типа S Золотой Рыбы являются пульсирующими гипергигантами. Для них свойственны неправильные изменения блеска с колебаниями от 1 до 7 m. Правда, это очень редкие и недолго живущие звезды, которые всегда окружают туманности.
  • ULX (Ультраяркие рентгеновские источники) — космические объекты, обладающие сильным рентгеновским излучением. Их переменность может варьироваться от секунд до нескольких лет. Вероятно, что их источником излучения является чёрная дыра. На самом деле, мало изучены, редкие.
  • Нейтронные звёзды, на самом деле, представляют собой образования из нейтронов (нейтральных субатомных частиц). Поскольку эти частицы сильно сжимаются силами гравитации, то плотность светил также очень высокая. Между прочим, её часть сравнивают со средней плотностью атомного ядра. И это при том, что радиус нейтронных объектов составляет от 10 до 20 км, а масса равна примерно 1,5 солнечных масс.
  • Двойные звёзды или системы отличаются, главным образом, тем, что состоят их пары светил, связанных между собой силами гравитации. К удивлению, наша Галактика наполовину состоит именно из двойных звёзд.
  • Уникальные (объект Стефенсона-Сандьюлика) — это двойная затменная система звёзд. Один из компонентов представляет массивное светило с высокой температурой и светимостью, а другой небольшое тело (может быть нейтронным образованием или даже чёрной дырой). В результате взаимодействия компонентов производится сильнейшее рентгеновское излучение. На данным момент, к уникальным относится лишь одна система SS 433.
  • Взрыв гиперновой
  • Нейтронная звезда
  • Двойная звезда Сириус
  • Объект Стефенсона-Сандьюлика (SS 433)

Как видно, виды звёзд нашей Вселенной могут быть разные. Стоит отметить, что они отличаются друг от друга по своему звёздному размеру и массе, составу, температуре, расстоянию до нас и другим характеристикам. Но несмотря на это, среди всех небесных тел они носят гордое название — звезда.

Новые и сверхновые звёзды

Начиная с глубокой древности, в исторических летописях разных народов неоднократно отмечены случаи появления звёзд, видимых невооружённым глазом на том месте, где их прежде не было. Особенно удивительными были эти «новые» звёзды, когда они становились столь яркими, что могли наблюдаться даже днём. Затем их свет постепенно, в течение нескольких месяцев ослабевал настолько, что звезду уже нельзя было видеть невооружённым глазом. Например, в китайских и японских хрониках сохранились сведения о «звезде-гостье», которая вспыхнула в созвездии Тельца в 1054 г. и в течение трех недель была видна днем, а через год совершенно «исчезла». В 1572 г. учитель Кеплера Тихо Браге наблюдал в созвездии Кассиопеи новую звезду, которая была ярче Венеры. В 1604 г

уже сам Кеплер наблюдал новую звезду в созвездии Змееносца.В настоящее время различают новые и сверхновые вспыхивающие звёзды. Такие неожиданные вспышки наблюдаются у звёзд, которые до этого долгое время оставались слабыми и не привлекали к себе внимание астрономов

У новых звёзд светимость возрастает на 12—13 звёздных величин и выделяется энергия до 1039 Дж. Звезда приобретает максимальную яркость всего за несколько суток, а ослабление до первоначального значения светимости может длиться годами (рис. 5.27)

 В 1954 г. было обнаружено, что одна из новых звёзд (DQ Геркулеса) является двойной с периодом обращения всего 4 ч 39 мин. Один из компонентов — белый карлик, а другой — красная звезда главной последовательности. Из-за их близкого расположения на белый карлик перетекает газ из атмосферы красного карлика. По мере накопления водорода плотность и температура внешних слоёв белого карлика возрастает, создаются условия для начала термоядерных реакций превращения водорода в гелий. Они происходят настолько быстро, что приобретают характер взрыва. При этом внешние слои звезды, составляющие небольшую часть её массы, расширяются и выбрасываются в космическое пространство. Их свечение и наблюдается как вспышка новой звезды. Такое явление может повторяться с тесными двойными звёздами неоднократно: у одних через тысячи, у других с изменением светимости на 4—5 звёздных величин через несколько десятков лет.

https://youtube.com/watch?v=_jp0QDk-ntg

 Домашнее задание:

1)Изучить материал.

2) Вопросы к зачету по теме » Солнце и звезды»:

  • Из каких химических элементов состоит Солнце и каково их соотношение?
  • Каков источник энергии излучения солнца? Какие изменения происходят при этом?
  • Какой слой Солнца является основным источником  видимого излучения?
  • Каково внутреннее строение Солнца? Назовите слои его атмосферы.
  • В каких пределах изменяется температура Солнца от центра до фотосферы?
  • Какими способами осуществляется  перенос энергии из недр Солнца наружу?
  • Чем объясняется наблюдаемая на Солнце грануляция?
  • Какие проявления Солнечной активности наблюдаются в различных слоях  атмосферы Солнца? С чем связана  причина этих явлений?
  • Чем объясняется  понижение температуры  в области солнечных пятен?
  • Какие явления на Земле связаны с солнечной активностью?
  • Как определяют расстояния до звезд?-
  • От чего зависит цвет звезды?
  • В чем главная причина  различия спектров звезд?
  • От чего зависит светимость звезды?
  • Чем объясняется изменение яркости некоторых двойных звезд?
  • Во сколько  раз отличаются размеры и плотности звезд-сверхгигантов и карликов?
  • Каковы (примерно) размеры самых маленьких звезд?
  • Перечислите известные Вам типы переменых звезд.
  • Перечислите конечные стадии эволюции звезд?
  • В чем причина изменения блеска цефеид?
  • Почему цефеиды называют «Маяками вселенной»?
  • Что такое пульсары?
  • Может ли Солнце вспыхнуть, как новая или сверхновая звезда? Почему?
  • Во сколько раз отличаются размеры и плотности звезд-карликов и звезд-сверхгигантов?
  • Каковы размеры самых маленьких звезд?
  • Звезда какого класса холодней F или B? Ответ поясните.
  • В чем отличие видимой и абсолютной звезных величин?
  • Сколько времени (в годах) свет идет от звезды, если ее параллакс равен 0.7″
  • Чему равен годичный параллакс звезды, если свет от нее идет 75 год/года/лет
  • Сколько земных лет будет лететь до звезды космический корабль со скоростью 90 км/с, если расстояние до нее 8 парсек?

Температура и масса звезд

Знание спектрального класса или цвета звезды сразу же дает температуру ее поверхности. Так как звезды излучают приблизительно как абсолютно черные тела соответствующей температуры, то мощность, излученная единицей их поверхности в единицу времени, определяется из закона Стефана — Больцмана.

Деление звезд на основании сопоставления светимости звезд сих температурой и цветом и абсолютной звездной величиной (диаграмма Герцшпрунга—Рессела):

  1. главная последовательность (в центре ее находится Солнце — желтый карлик)
  2. сверхгиганты (велики по размерам и большая светимость: Антарес, Бетельгейзе)
  3. последовательность красных гигантов
  4. карлики (белые — Сириус)
  5. субкарлики
  6. бело-голубая последовательность

Это разделение также и по возрасту звезды.

Диаграмма Герцшпрунга—Рессела

Различают следующие звезды:

  1. обычные (Солнце);
  2. двойные (Мицар, Албкор) делятся на:
  • а) визуально-двойные, если их двойственность замечена при наблюдении в телескоп;
  • б) кратные — это система звезд с числом больше чем 2, но меньше чем 10;
  • в) оптически-двойные — это такие звезды, что их близость является результатом случайной проекции на небо, а в пространстве они далеки;
  • г) физически-двойные — это звезды, которые образуют единую систему и обращаются под действием сил взаимного притяжения вокруг общего центра масс;
  • д) спектрально-двойные — это звезды, которые при взаимном обращении подходят близко друг к другу и их двойственность можно определить но спектру;
  • е) затменно-двойные — это звезды» которые при взаимном обращении загораживают друг друга;
  • переменные (б Цефея). Цефеиды — переменные по яркости звезды. Амплитуда изменения яркости составляет не более 1,5 звездной величины. Это пульсирующие звезды, т. е. они периодически расширяются и сжимаются. Сжатие наружных слоев вызывает их нагрев;
  • нестационарные.

Новые звезды — это звезды, которые существовали давно, но внезапно вспыхнули. Их яркость увеличилась за короткое время в 10 000 раз (амплитуда изменения яркости от 7 до 14 звездных величин).

Сверхновые звезды — это звезды, которые были незаметны на небе, но неожиданно вспыхнули и увеличили яркость в 1000 раз относительно обычных новых звезд.

Пульсар — нейтронная звезда, возникающая при взрыве сверхновой.

Данные об общем числе пульсаров и времени их жизни свидетельствуют, что в среднем в столетие рождаются 2—3 пульсара, это приблизительно совпадает с частотой вспышек сверхновых в Галактике.

Жизненный путь звезды

Диаграмма Герцшпрунга — Рассела

С момента образования, звезда в развитии не стоит на месте — и в диаграмме Герцшпрунца-Рассела это видно лучше всего. Рождение, старение и смерть светила отслеживается по диаграмме ГР четкой линией, называемой «эволюционным треком». Взяв, к примеру, трек нашего Солнца, можно выделить следующие этапы:

  • После рождения, около 90% «жизни» звезда располагается в Главной последовательности — поэтому к ней и принадлежит больше всего звезд. Срок такого стабильного существования непосредственно зависит от положения в диаграмме. Чем выше и левее звезда, тем ярче она и горячее — следовательно, в ней быстрее выгорает водород. Звезды пониже — тусклее, они могут существовать десятками миллиардов лет. Солнце тут заняло «золотую середину». Оно горит уже 5 миллиардов лет и будет гореть примерно столько же.
  • Что случится, когда водород — звездное топливо — полностью выгорит? В Солнца, как и в других небольших звезд, происходит гравитационное сжатие — коллапс. Так как энергии становится меньше, силы тяготения начинают сильнее сжимать ядро звезды. От этого загорается гелий в ядре — «пепел» от первичного горения водорода. Сила этого процесса такова, что светило расширяется в десятки раз и светится ярче. Но энергия горения гелия не превышает энергию водорода, и за счет увеличения площади, звезда остывает до красного цвета. Так Солнце превратится в красного гиганта, покинув Главную последовательность диаграммы Герцшпрунга-Рассела ради высот гигантов.
  • Но для звезд класса Солнца взлет вверх быстро заканчивается. Гелий заканчивается куда быстрее, чем водород — и гравитация сжимает ядро в маленькую плотную звезду, белого карлика, которой только и остается что остывать. В итоге, звезда падает вниз по диаграмме, где и остается до самого конца.
  • Звезд покрупнее ждет куда более яркая участь. Гелия в них достаточно, чтобы продолжать реакцию. После гелия термоядерную «эстафету» принимает новообразованный углерод, затем — магний. Рано или поздно звезда достигает критической массы, после которой взрывается в сверхновой. Ее энергия и свечение может быть сильнее, чем во всех звезд Вселенной одновременно. По диаграмме ГР, сверхновая находится необозримо высоко.

Итоговый тест по астрономии 10-11 класс базовый уровень

itogovyy_test_po_astronomii_s_otvetami

1. Астрономия – наука, изучающая …

а) движение и происхождение небесных тел и их систем
б) развитие небесных тел и их природу
в) движение, природу, происхождение и развитие небесных тел и их систем

2. Эклиптика – это …

а) зодиакальный пояс созвездий
б) годичный путь Солнца по небесной сфере
в) линия, вдоль которой движется Луна
г) траектория движения планеты

3. Самое высокое положение светила относительно горизонта, достигаемое при его прохождении через небесный меридиан — …

а) зенит
б) верхняя кульминация
в) прямое восхождение
г) склонение

4. Что является причиной затмения Солнца?

а) вращение Земли вокруг оси
б) движение Земли вокруг Солнца
в) взаимное расположение Солнца, Луны и Земли, при котором Земля попадает в тень Луны
г) взаимное расположение Солнца, Луны и Земли, при котором Луна попадает в тень Земли

5. Орбитами планет являются …

а) окружности
б) эллипсы
в) параболы
г) эллипсы и параболы

6. Ближайшая к Солнцу точка орбиты планеты называется …

а) перигелий
б) афелий
в) эллипс
г) эксцентриситет

7. Самая большая планета Солнечной системы — …

а) Земля
б) Меркурий
в) Юпитер
г) Нептун

8. Планета, которая находится за Сатурном –
а) Земля
б) Юпитер
в) Уран
г) Нептун

9. Вспыхивающие в земной атмосфере мельчайшие твердые частицы, которые вторгаются в нее извне с огромной скоростью называются …

а) кометы
б) астероиды
в) метеоры
г) планеты

10. Количество энергии, которую излучает звезда со всей своей поверхности в единицу времени по всем направлениям называется …

а) звездная величина
б) яркость
в) парсек
г) светимость

11. Что представляет собой солнечный ветер?

а) конвекционное перемещение слоев атмосферы Солнца
б) непрерывный поток горячей разряженной плазмы, испускаемый Солнцем в космическое пространство
в) комическая пыль, проникающая в атмосферу Земли пол воздействием Солнца
г) поток испускаемых частиц от Солнца к Земле

12. В какой области Солнца протекают термоядерные реакции?

а) в короне
б) в протуберанцах
в) в ядре
г) в фотосфере

13. Какие наблюдения подтвердили протекание термоядерных реакций синтеза гелия и водорода в солнечном ядре?

а) наблюдение солнечного ветра
б) наблюдение солнечных пятен
в) наблюдение рентгеновского излучения Солнца
г) наблюдение потока солнечных нейтрино

14. Расстояние, с которого средний радиус земной орбиты виден под углом 1 секунда называется …

а) астрономическая единица
б) парсек
в) световой год
г) звездная величина

15. Самую низкую температуру поверхности имеют

а) голубые звезды
б) желтые звезды
в) красные звезды
г) белые звезды

16. Желтые звезды типа Солнца имеют температуру поверхности около

а) 3000К
б) 6000К
в) 20000К
г) 10800К

17. Пульсар – это …

а) быстро вращающаяся звезда типа Солнца
б) быстро вращающийся красный гигант
в) быстро вращающаяся нейтронная звезда
г) быстро вращающийся белый карлик

18. Нашу Галактику можно представить в виде …

а) гигантского звездного шара
б) гигантской сплюснутой системе звезд
в) гигантской бесформенной совокупности звезд
г) гигантского сплюснутого диска из звезд, газа и пыли, образующих спирали

19. Что указывает на расширение Вселенной?

а) красное смещение а спектрах далеких галактик
б) вращение галактик вокруг оси
в) черные дыры в ядрах галактик
г) наличие газа и пыли в спиральных галактиках

20. Что указывает на высокую температуру вещества на начальных этапах эволюции Вселенной?

а) реликтовое излучение
б) распределение галактик в пространстве
в) высокая температура в звездах

Понравилась статья? Поделиться с друзьями:
Журнал «Наш дворик»
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: