Измерительные трансформаторы тока и напряжения: важные технические характеристики

Простые советы о том, как проверить трансформатор мультиметром на работоспособность

Отказывающие декомпенсационные катушки: причины и способы устранения

Отказ декомпенсационных катушек может быть вызван различными причинами:

Причина
Описание
Механические повреждения
Катушки могут быть повреждены при неосторожном обращении с прибором или в результате внешних воздействий.
Устаревание
С течением времени детали прибора изнашиваются и теряют свои характеристики, что может привести к отказу катушек.
Электрические перегрузки
При сильных токовых всплесках или коротких замыканиях катушки могут выйти из строя из-за повышенной нагрузки.

Если обнаружено повреждение или отказ декомпенсационных катушек, необходимо принять меры по их устранению. Возможные способы решения проблемы включают:

1. Замена катушек. В случае серьезного повреждения или выхода из строя катушек, они должны быть заменены на новые.

2. Ремонт. В некоторых случаях возможно провести ремонт катушек, восстановив их работоспособность.

3. Проверка и настройка. Периодическая проверка и настройка декомпенсационных катушек может помочь предотвратить их отказ и обеспечить стабильную работу прибора.

Важно отметить, что любые работы по замене или ремонту декомпенсационных катушек должны проводиться специалистами, обладающими соответствующими знаниями и опытом, чтобы гарантировать безопасность и эффективность устранения проблемы

Зачем нужна комплексная диагностика трансформаторов

Чтобы оценить техническое состояние электрооборудования, специалистами инженерного выполняется комплексная диагностика трансформаторов. С ее помощью можно выявить потенциальные угрозы и дефекты, способные привести к аварии на энергообъекте. На основании полученных данных разрабатывается концепцию продления периода эксплуатации оборудования путем замены изношенных рабочих узлов. Комплексное обследование трансформаторов выполняют в следующих случаях:

  • назрела необходимость проведения капитального ремонта электрооборудования;
  • необходимо составление экспертного технического заключения при аварийной остановке оборудования;
  • для технического обоснования выявленных дефектов при проведении разного рода проверок;
  • для определения условий и норм функционирования оборудования согласно с Государственным Отраслевым Стандартом 11677.

Своевременное проведение экспертизы силовых трансформаторов снижает риск простоев их по причине аварийных остановок и увеличивает надежность эксплуатации всего энергетического объекта.

Межвитковое замыкание трансформатора: как определить

Еще один частый недостаток трансформаторов — это двухвитковая схема, распознать ее только мультиметром практически невозможно. Осведомленность, острое зрение и обоняние могут помочь. Провод изолирован только благодаря лакокрасочному покрытию; при пробое изоляции между соседними витками сопротивление все равно остается, что приводит к локальному нагреву. При визуальном осмотре исправного трансформатора не должно быть почернения, полос или вздутия заливки, обугливания бумаги, запаха гари.

Если тип трансформатора определен, то по справочнику можно узнать сопротивление его обмоток. Для этого воспользуемся мультиметром в режиме мегомметра. Измерив сопротивление изоляции обмоток трансформатора, сравниваем его с эталонным: отличия более 50% говорят о неисправности обмотки. Если сопротивление обмоток трансформатора не указывается, то всегда указывается количество витков, сечение и тип провода и теоретически при желании его можно рассчитать.

Режимы работы трансформатора

Режим холостого хода

Данный режим характеризуется разомкнутой вторичной цепью трансформатора, вследствие чего ток в ней не течёт. По первичной обмотке протекает ток холостого хода, главной составляющей которого является реактивный ток намагничивания. С помощью опыта холостого хода можно определить КПД трансформатора, коэффициент трансформации, а также потери в сердечнике (т.н. «потери в стали»).

Режим нагрузки

Этот режим характеризуется работой трансформатора с подключенными источником в первичной и нагрузкой во вторичной цепи трансформатора. В вторичной обмотке протекает ток нагрузки, а в первичной — ток, который можно представить как сумму тока нагрузки (пересчитанного из соотношения числа витков обмоток и вторичного тока) и ток холостого хода. Данный режим является основным рабочим для трансформатора.

Режим короткого замыкания

Этот режим получается в результате замыкания вторичной цепи накоротко. Это разновидность режима нагрузки, при котором сопротивление вторичной обмотки является единственной нагрузкой. С помощью опыта короткого замыкания можно определить потери на нагрев обмоток в цепи трансформатора («потери в меди»). Это явление учитывается в схеме замещения реального трансформатора при помощи активного сопротивления.

Режим холостого хода

При равенстве вторичного тока нулю (режим холостого хода), ЭДС индукции в первичной обмотке практически полностью компенсирует напряжение источника питания, поэтому ток, протекающий через первичную обмотку, равен переменному току намагничивания, нагрузочные токи отсутствуют. Для трансформатора с сердечником из магнитомягкого материала (ферромагнитного материала, трансформаторной стали) ток холостого хода характеризует величину потерь в сердечнике (на вихревые токи и на гистерезис) и реактивную мощность перемагничивания магнитопровода. Мощность потерь можно вычислить, умножив активную составляющую тока холостого хода на напряжение, подаваемое на трансформатор.

Для трансформатора без ферромагнитного сердечника потери на перемагничивание отсутствуют, а ток холостого хода определяется сопротивлением индуктивности первичной обмотки, которое пропорционально частоте переменного тока и величине индуктивности.

Напряжение на вторичной обмотке в первом приближении определяется законом Фарадея.

Режим короткого замыкания

В режиме короткого замыкания, на первичную обмотку трансформатора подаётся переменное напряжение небольшой величины, выводы вторичной обмотки соединяют накоротко. Величину напряжения на входе устанавливают такую, чтобы ток короткого замыкания равнялся номинальному (расчётному) току трансформатора. В таких условиях величина напряжения короткого замыкания характеризует потери в обмотках трансформатора, потери на омическом сопротивлении. Мощность потерь можно вычислить, умножив напряжение короткого замыкания на ток короткого замыкания.

Данный режим широко используется в измерительных трансформаторах тока.

Режим нагрузки

При подключении нагрузки к вторичной обмотке во вторичной цепи возникает ток нагрузки, создающий магнитный поток в магнитопроводе, направленный противоположно магнитному потоку, создаваемому первичной обмоткой. В результате в первичной цепи нарушается равенство ЭДС индукции и ЭДС источника питания, что приводит к увеличению тока в первичной обмотке до тех пор, пока магнитный поток не достигнет практически прежнего значения.

Мгновенный магнитный поток в магнитопроводе трансформатора определяется интегралом по времени от мгновенного значения ЭДС в первичной обмотке и в случае синусоидального напряжения сдвинут по фазе на 90° по отношению к ЭДС. Наведённая во вторичных обмотках ЭДС пропорциональна первой производной от магнитного потока и для любой формы тока совпадает по фазе и форме с ЭДС в первичной обмотке.

Как проверить трансформатор тока

Устройства, пропорционально преобразующие переменный ток из одной величины в другую на основе принципов электромагнитной индукции, называют трансформаторами тока (ТТ). Их широко используют в энергетике и изготавливают разными конструкциями от маленьких моделей, размещаемых на электронных платах до метровых сооружений, устанавливаемых на железобетонные опоры.

Возможные неисправности

. Трансформаторы выполняются автономными устройствами в изолированном корпусе с выводами для подключения к первичному оборудованию и вторичным устройствам. Ниже приведены основные причины неисправностей:

Методы проверок

. Для оценки состояния ТТ проводится визуальный осмотр и электрические проверки.

Визуальный внешний осмотр

. Проводится в первую очередь и позволяет оценить:

Проверка изоляции

. (эксплуатация ТТ с нарушенной изоляцией не допускается!).

Испытания изоляции

. На высоковольтном оборудовании трансформатор тока смонтирован в составе линии нагрузки, входит в нее конструктивно и подвергается совместным высоковольтным испытаниям отходящей линии специалистами службы изоляции. По результатам испытаний оборудование допускается в эксплуатацию.

Косвенные методы

Каждый из перечисленных ниже способов проверки может предоставить лишь частичную информации о состоянии трансформаторов. Поэтому эти способы необходимо применять в комплексе.

Определение правильности маркировки выводов обмоток

Целостность обмоток ТТ и их выводов следует определять замером их активных сопротивлений с проверкой или последующим нанесением маркировки.

Определение начала и конца каждой из обмоток следует проводить способом, позволяющим установить полярность.

Проверка полярности выводов обмоток.

Для проведения испытаний к вторичной обмотке присоединить амперметр или вольтметр магнитоэлектрического типа с определенной полярностью на его выводах.

Определение полярности выводов обмоток Трансформатора тока.

Рекомендуется использовать прибор с нулем посередине шкалы, однако, допускается использовать и с нулем, расположенным в начале шкалы.

Все остальные вторичные обмотки трансформатора необходимо, из соображений безопасности, зашунтировать.

К первичной обмотке ТТ необходимо подключить источник постоянного тока, затем последовательно подключить к нему сопротивление для ограничения тока разряда. Достаточно использовать обыкновенный элемент питания (батарейку) с лампочкой накаливания. Вместо выключателя можно просто коснуться проводом от лампочки клеммы первичной обмотки ТТ и затем отвести его.

При совпадении полярности стрелка сдвинется вправо и возвратится назад. Если прибор подключен с обратной полярностью, то стрелка будет сдвигаться влево.

При отключении питания у однополярных обмоток стрелка сдвигается толчком влево, а в противном случае – толчком вправо.

Таким же образом следует проверить полярность подключения других обмоток трансформатора.

Снятие характеристики намагничивания.

Зависимость напряжения на клеммах вторичных обмоток от протекающего по ним тока намагничивания называется вольт-амперной характеристикой, сокращенно ВАХ. Она свидетельствует о правильности работы обмотки и магнитопровода, позволяет оценить их исправность.

Для того, чтобы исключить влияние помех со стороны расположенного рядом силового оборудования, характеристику ВАХ следует снимать, предварительно разомкнув цепь первичной обмотки.

Для построения характеристики ВАХ необходимо пропускать переменный ток различных величин через обмотку ТТ и измерять напряжение на входе обмотки. Такие испытания можно проводить любым лабораторным стендом с блоком питания, имеющим выходную мощность, позволяющую нагружать обмотку до насыщения магнитопровода трансформатора, при котором кривая насыщения обратится в горизонтальное положение.

Полученные по замерам данные нужно занести в таблицу протокола. По табличным данным строятся графики ВАХ.

Перед началом проведения замеров и после их окончания следует в обязательном порядке производить размагничивание магнитопровода методом нескольких постепенных увеличений тока в обмотке и последующим снижением тока до нуля.

Важно

Для измерения значений токов и напряжений следует использовать приборы электромагнитной или электродинамической систем, которые могут воспринимать действующие значения тока и напряжения.

Наличие в обмотке короткозамкнутых витков уменьшает величину выходного напряжения в обмотке и снижает крутизну ВАХ. В связи с этим, при первом использовании исправного ТТ необходимо сделать замеры и построить график ВАХ, а при последующих проверках ТТ через определенное нормативами время следует контролируют состояние выходных параметров.

Методы диагностики силовых трансформаторов

В перечень диагностических процедур входят следующие работы:

  • проверка состояния обмотки и ее изоляторов;
  • проверка характеристик трансформаторного масла;
  • диагностика переключателя;
  • проверка вентиляционной системы.

Проверку и испытание силовых трансформаторов напряжения начинают с исследования состояния обмотки.

Мощность и класс напряжения обмотки высшего напряжения (ВН) Температура в С
10 | 20. 30 40 50
До 35 кВ включительно мощностью менее 10 МВА Отношение Д С/С в конце ревизии в % 13 20 30 45 75
Разность между величиной А С/С в конце и начале ревизии в % 4 6 9 13,5 22
Мощность трансформатора н класс напряжения обмотки ВН в % ПРИ температуре обмотки в е С
10 20 30 40 50 60 | 70
До 35 кВ включительно мощностью менее 2 500 кВА 1,5 2 2,6 3,4 4,6 6 8
До 35 кВ включительно мощностью менее 10 000 кВА 1,2 1,5 2 2,6 3,4 4,5 6

Диагностические процедуры позволяют выявить радиологические помехи, а также наличие влаги в трансформаторном масле. После выключения оборудования, мастера инженерного замеряют сопротивляемость тока, сопротивление изоляции и определяют коэффициенты потерь. Проверка вторичных цепей трансформаторов напряжения проводится согласно инструкции производителя.

Тип изоляции трансформатора Испытательное напряжение в в при номинальном напряжении обмоток в кВ
до 0,525 3 6 10 15 20 30
Нормальная . 5 18 25 35 45 55 85
Облегченная . 3 10 16 24 37

Следующим шагом мастера исследуют рабочие характеристики трансформаторного масла: цвет, вязкость, натяжение, плотность, изоляционное сопротивление, наличие в нем примесей (влаги, газов). В ходе диагностики замеряются показатели изоляции, качество заземления

Также мастера уделяют внимание проверке стабильности контакта в переключателе, измерению его температуры и количеству кв электродвигателя. Параметры, которые исследуют в вентиляционной системе, следующие:

  • качество воздушного потока;
  • вибрации в подшипниках;
  • показатели тока в обмотке;
  • чистота поверхностей.

Для определения степени износа изоляционного материала используют такие методы как выявление степени концентрации производных фурфурола, оксида и диоксида углерода, замер степени полимеризации. На основании данных определяется предельно допустимое время для дальнейшей эксплуатации изоляционного материала. Периодичность проверок трансформаторов зависит от их целей: текущая проводится не реже, чем раз в месяц. Комплексная проверка измерительными приборами с целью проведения последующего капитального ремонта технического оборудования производится раз в 3-4 года.

Косвенные методы

Каждый из перечисленных ниже способов проверки может предоставить лишь частичную информации о состоянии трансформаторов. Поэтому эти способы необходимо применять в комплексе.

Определение правильности маркировки выводов обмоток

Целостность обмоток ТТ и их выводов следует определять замером их активных сопротивлений с проверкой или последующим нанесением маркировки.

Определение начала и конца каждой из обмоток следует проводить способом, позволяющим установить полярность.

Проверка полярности выводов обмоток.

Для проведения испытаний к вторичной обмотке присоединить амперметр или вольтметр магнитоэлектрического типа с определенной полярностью на его выводах.

Рекомендуется использовать прибор с нулем посередине шкалы, однако, допускается использовать и с нулем, расположенным в начале шкалы.

Все остальные вторичные обмотки трансформатора необходимо, из соображений безопасности, зашунтировать.

К первичной обмотке ТТ необходимо подключить источник постоянного тока, затем последовательно подключить к нему сопротивление для ограничения тока разряда. Достаточно использовать обыкновенный элемент питания (батарейку) с лампочкой накаливания. Вместо выключателя можно просто коснуться проводом от лампочки клеммы первичной обмотки ТТ и затем отвести его.

При совпадении полярности стрелка сдвинется вправо и возвратится назад. Если прибор подключен с обратной полярностью, то стрелка будет сдвигаться влево.

При отключении питания у однополярных обмоток стрелка сдвигается толчком влево, а в противном случае – толчком вправо.

Таким же образом следует проверить полярность подключения других обмоток трансформатора.

Снятие характеристики намагничивания.

Зависимость напряжения на клеммах вторичных обмоток от протекающего по ним тока намагничивания называется вольт-амперной характеристикой, сокращенно ВАХ. Она свидетельствует о правильности работы обмотки и магнитопровода, позволяет оценить их исправность.

Для того, чтобы исключить влияние помех со стороны расположенного рядом силового оборудования, характеристику ВАХ следует снимать, предварительно разомкнув цепь первичной обмотки.

Для построения характеристики ВАХ необходимо пропускать переменный ток различных величин через обмотку ТТ и измерять напряжение на входе обмотки. Такие испытания можно проводить любым лабораторным стендом с блоком питания, имеющим выходную мощность, позволяющую нагружать обмотку до насыщения магнитопровода трансформатора, при котором кривая насыщения обратится в горизонтальное положение.

Полученные по замерам данные нужно занести в таблицу протокола. По табличным данным строятся графики ВАХ.

Перед началом проведения замеров и после их окончания следует в обязательном порядке производить размагничивание магнитопровода методом нескольких постепенных увеличений тока в обмотке и последующим снижением тока до нуля.

Важно

Для измерения значений токов и напряжений следует использовать приборы электромагнитной или электродинамической систем, которые могут воспринимать действующие значения тока и напряжения.

Наличие в обмотке короткозамкнутых витков уменьшает величину выходного напряжения в обмотке и снижает крутизну ВАХ. В связи с этим, при первом использовании исправного ТТ необходимо сделать замеры и построить график ВАХ, а при последующих проверках ТТ через определенное нормативами время следует контролируют состояние выходных параметров.

Полярность трансформатора важна при параллельном подключении трансформаторов для усиления мощности или подключении нескольких однофазных трансформаторов чтобы получить трехфазный.

Значки полярности показывают соединения, в которых входное и выходное напряжения имеют одинаковую полярность

В данный момент времени, это важно при подключении трансформаторов тока для релейной защиты и измерения

Назначение трансформаторов тока простыми словами

Основная задача

Трансформатор тока (сокращенное общепринятое обозначение ТТ) создан для работы в электрических схемах как простой преобразователь, способный с высокой точностью пропорционально понижать токи высоких величин до номинальных вторичных значений без изменения частоты сигнала.

На его вход подается первичный переменный ток большой величины, а по выходной цепочке протекает уменьшенное, преобразованное значение нагрузки.

Этот процесс легко представить совмещенными графиками синусоид обоих токов с их отображением на простой векторной диаграмме единичной окружности.

Синусоида первичного тока I1, проходящего по силовым шинам, показана графиком с высокой амплитудой, которая может превышать, например, 100 или 200 ампер. Допустим, что она отстоит от начала координат на какой-то угол α.

Ее форма и величина станет преобразовываться в ТТ во вторичную величину I2 со значительно меньшей амплитудой, например, 1 или 5 ампер.

Графики синусоидальных гармоник легко упрощаются векторными выражениями, построенными на плоскости единичной окружности. Они облегчают понимание происходящих процессов, позволяют проще их анализировать.

Векторная диаграмма просто рисуется и наглядно показывает пропорции величин каждой составляющей и их направление.

Сейчас же сделаем простой вывод: в любой момент времени ti синусоида I2 повторяет форму сигнала I1 и отличается от нее строго на определенную величину, называемую коэффициентом трансформации Ктт.

Его так и записывают на шильдике корпуса: выражением отношения первичного тока, показанного на первом месте, ко вторичному, например, 200/5.

В принципе здесь используется та же технология и маркировка, что у обычного трансформатора напряжения, где вместо ампер показываются вольты.

Практическое применение

Трансформаторы тока создаются в качестве измерительных приборов, обладающих определенными метрологическими характеристиками. Они работают в цепях измерения и схемах защитных устройств.

Их оценивают классами точности по двум параметрам:

  1. Отклонению реальной амплитуды вторичного тока от расчетного значения, вычисленного по коэффициенту трансформации.
  2. Смещению по времени угла вторичной синусоиды ẟ относительно первичного сигнала.

Для сведения: в результате трансформации ТТ частота вторичного сигнала не меняется, остается прежней. Погрешности образуются только по углу ẟ и амплитуде, но они не существенны для измерений, осуществляемых в бытовой электропроводке.

Далее разбираемся с конструкцией и принципами работы.

Возможные неисправности

Распространенные поломки трансформатора включают:

  • перегорание кабеля в катушке;
  • повреждение изоляции, вызывающее межвитковое замыкание или электрический контакт между катушкой и корпусом;
  • дефект сердечника;
  • естественный износ выводов обмоток или контактов.

Визуальная проверка трансформатора позволяет выявить повреждение или отсутствие изоляции, неисправность клемм и болтов, вздутие или протекание

Также при осмотре нужно обращать внимание на имеющуюся черноту, обугливание бумаги, запах гари. При отсутствии видимых повреждений работоспособность устройства проверятся с применением измерительных приборов

Нюансы

Некоторые обмотки трансформаторов невозможно прозвонить

Рекомендуется обратить внимание на наличие микросборки впаянной в корпус трансформатора. Это может быть схема выпрямления на выводной обмотке или фильтр помех

Обмотка может не звониться при большом сопротивлении, отсутствие показаний в данном случае не свидетельствует о неисправности. Также не забывают проверять замыкание на корпус, если сопротивления обмоток в порядке. Проверке подвергается каждый вывод прибора.

Нестабильная работа трансформатора может быть связана с колебаниями напряжения в питающей сети. Причем значение холостого хода, когда подключена только первая обмотка, будет находиться в допустимых пределах. Под нагрузкой же питание значительно «просядет».

Как проверить импульсный трансформатор на межвитковое замыкание и обрыв

Для проверки целостности обмоток лучше всего использовать цифровой тестер, но можно исследовать их и с помощью стрелочного.

В первом случае используется режим прозвонки диодов, обозначенный на мультиметре символом обозначения диода на схеме.

диод на схеме

  • Для определения обрыва к цифровому прибору подключаются измерительные провода.
  • Один вставляется в разъёмы, обозначенные V/Ω, а второй — в COM.
  • Галетный переключатель переводится в область прозвонки.
  • Измерительными щупами последовательно дотрагиваются до каждой обмотки, красным — к одному её выводу, а чёрным — к другому. При её целостности мультиметр запищит.

Аналоговым тестером проверка выполняется в режиме замера сопротивлений. Для этого на тестере выбирается наименьший диапазон измерения сопротивлений. Это может быть реализовано через кнопки или переключатель. Щупами прибора, так же как и в случае с цифровым мультиметром, дотрагиваются до начала и конца обмотки. При её повреждении стрелка останется на месте и не отклонится.

Таким же образом происходит проверка на межвитковое и короткое замыкание.

Возникнуть КЗ может из-за пробоя изоляции. В результате сопротивление обмотки уменьшится, что приведёт к перераспределению в устройстве магнитного потока.

Для проведения тестирования мультиметр переключается в режим проверки сопротивления.

Чтобы убедиться в отсутствии КЗ на магнитопровод, одним щупом прикасаются к «железу» трансформатора, а вторым — последовательно к каждой обмотке. Отклонения стрелки или появления звукового сигнала быть не должно. Стоит отметить, что прозвонить тестером межвитковое замыкание можно только в приближённом виде, так как погрешность прибора довольно высока.

Определение мощности

Далее будет рассмотрен вопрос, как узнать мощность трансформатора. Для этого потребуется замерить ширину его сердечника. Если ТР имеет сердечник типа «Ш», то придется замерить толщину центральных пластин. Например, толщина пластин 2 см, а ширина центрального набора 1.7 см. Необходимо перемножить эти значения, получив число 3.4 кв/см. Далее понадобится коэффициент усреднения для трансформаторов, равный 1.3. 3.4 разделить на 1.3 = 2.6 кв/см. Это значение определяет мощность ТР равную 7 Вт.

Многие задаются вопросом, как определить мощность трансформатора мультиметром. Бытовой элемент таким способом протестировать не получиться.

Что это такое?

Под полярностью ТТ понимается определенный порядок расположения выводов его вторичной обмотки, обеспечивающий условия для передачи токового сигнала в нужной фазе. Имеющаяся на корпусе маркировка указывает на выводы, в которых выходной И1-И2 и входной Л1-Л2 сигналы действуют синфазно (имеют одну и ту же полярность). То есть они в этих точках должны достигать своих максимумов и минимумов одновременно.

Важно! От правильности включения катушек зависит корректность показаний подключенного к вторичной обмотке измерителя (счетчика электроэнергии, в частности). При нарушении этого порядка они будут сильно отличаться от реальных значений

При нарушении этого порядка они будут сильно отличаться от реальных значений.

Основы и принципы работы

Трансформатор – электротехническое устройство преобразования одной величины электроэнергии в другую. Ими может быть напряжение, которое преобразуется из одного класса в другой. Или электрический ток, который трансформируется из входного значение в нужное для различного функционала на выходе.

Индуцирование магнитного поля, преобразование которого легло в элементарный принцип действия простейшего трансформатора всегда реализуемо в среде переменного (изменяющего во времени с определенной частотой, номинальное значение которой 50Гц) тока. В случае необходимости работы трансформатора на постоянном токе (не изменяется со временем, его частота протекания равна 0) такое магнитное поле требуется в начале преобразовывать.

Любой электрический трансформатор обязательно состоит из основных конструктивных узлов:

  • Сердечник (магнитопровод) – выполняется в различной форме и конфигурации в зависимости от назначения преобразователя, его параметров преобразования и прочих деталей. Изготавливается из электротехнической шихтованной стали. Возможны варианты изготовления из многих ферромагнитных материалов;
  • Двух обмоток – первичной и вторичной – выполняются в виде катушек медных проводников рассчитанного сечения и намотанных на сердечник в определенном количестве витков, в зависимости от мощностных и функциональных значений устройства;
  • Контактов и клемм на каждой из обмоток для подключения входных и снятия выходных трансформируемых величин;
  • Дополнительные электротехнические устройства, изоляционные материалы, крепежные части – их расположение, тип, многообразие тоже в пропорциональности функционала, характеристик преобразователя прямого типа.

На магнитопровод разной конструкции, на заводах изготовителях преобразовательных устройств, по специальной расчетной технологии, намотана первичная обмотка медных проводников определенного количества витков. На нее всегда производится подача внешней электрической величины (напряжения, тока) для начала процесса ее преобразования.

Далее в составе и на сердечнике устройства идут одна или несколько, по функционалу трансформатора обмоток вторичного преобразования. Их намотку по заводским технологиям выполняет изготовитель с определенным шагом и количеством витков из медного проводника. С контактов вторичной обмотки или обмоток производится снятие выходной электрической величины, уже преобразованной в требуемый класс или значение.

В таком основном конструктивном строении и обеспечивается основной процесс трансформации определенной величины электроэнергии в нужное выходное значение, согласно закону электромагнитной индукции. В большинстве случае процесс трансформации работает на образование на выходе вторичной обмотки понижающего значения электровеличины.

Параметры трансформации, мощность устройства и другие номинальные параметры заключены и зависят от строения и формы магнитопровода преобразователя, количества и вида намотки первичной обмотки устройства, наличия в его конструктивном исполнении одной или нескольких вторичных обмоток.

Возможные неисправности

Как известно, любой трансформатор состоит из следующих компонентов:

  • первичная и вторичная катушки (вторичных может быть несколько);
  • сердечник или магнитопровод;
  • рамка.

Поэтому список возможных сбоев весьма ограничен:

  1. Ядро повреждено.
  2. Перегорел провод в любой из обмоток.
  3. Нарушается изоляция, в результате чего возникает электрический контакт между витками катушки (межвитковое замыкание) или между катушкой и корпусом.
  4. Изношены выводы или контакты катушки.

Трансформатор тока Т-0,66 150 / 5а

Некоторые дефекты определяются визуально, поэтому трансформатор предварительно необходимо внимательно осмотреть

Вот на что следует обратить внимание при этом:

  • трещины, сколы утеплителя или его отсутствие;
  • состояние болтовых соединений и клемм;
  • набухание пломбы или ее отток;
  • почернение видимых поверхностей;
  • обугленная бумага;
  • характерный запах пригоревшего материала.

Если явных повреждений нет, следует проверить устройство на работоспособность с помощью инструментов. Для этого нужно знать, к каким обмоткам относятся все его выводы. На больших преобразователях эта информация может быть представлена ​​в виде графического изображения.

Порядок снятия вольт-амперной характеристики (ВАХ)

Перед подачей напряжения на испытательную установку рукоятка управления ЛАТРом должна находиться в крайнем положении, соответствующем нулевой величине напряжения на выходе. Затем, после включения питания, нужно размагнитить железо трансформатора.

После этого начинается процесс снятия ВАХ.

Оптимальным является работа в бригаде из двух человек. Один поднимает напряжение и фиксирует ток амперметра в нормируемых точках. Второй при этом снимает показания с вольтметра и записывает в заранее заготовленную таблицу.

Когда начинается участок насыщения, малому приращению напряжения от источника будет соответствовать резкое увеличение тока. На этом этапе нормируемые точки для измерения легко проскочить. Возвращать ручку ЛАТРа назад с целью снять показания вольтметра поточнее нельзя. Нужно плавно сбросить напряжение до нуля и начать процесс сначала.

По достижении конечной точки для измерений напряжение ЛАТРа плавно уменьшают до нуля, после чего проверочную установку отключают от сети.

Ещё одно интересносе видео о Ретоме 21 и снятии ВАХ с ТТ от профессионального энергетика:

Проблемы и недостатки трансформаторов тока

Проблемы и недостатки трансформаторов тока могут возникать в различных аспектах и могут повлиять на точность измерений, надежность работы и безопасность системы. Вот более подробное рассмотрение каждой из проблем:

Точность измерений и возможные искажения

  1. Неточность измерений: Точность трансформаторов тока зависит от их класса точности. Некачественные трансформаторы или трансформаторы с низким классом точности могут давать неточные результаты измерений тока.
  2. Искажения формы тока: Некоторые трансформаторы тока могут искажать форму тока на вторичной стороне, особенно при высоких частотах или при наличии высших гармоник. Это может привести к искажениям в измерениях и ошибкам в системе контроля.
  3. Влияние нагрузки: Токовая нагрузка на вторичной обмотке трансформатора может влиять на его работу и точность измерений. Когда нагрузка изменяется, это может привести к изменению характеристик трансформатора и влиять на его точность.

Влияние внешних факторов на работу трансформаторов тока

  1. Влияние магнитных полей: Сильные магнитные поля, возникающие от других электромагнитных устройств или оборудования, могут повлиять на работу трансформаторов тока и вызвать искажения в измерениях.
  2. Влияние температуры: Экстремальные температурные условия, такие как высокая или низкая температура, могут повлиять на электрические характеристики трансформатора и его точность измерений.
  3. Электромагнитные помехи: Электрические помехи и сигналы могут повлиять на трансформаторы тока и вызвать ошибки в измерениях.

Меры предосторожности и устранение неполадок

  1. Правильная установка: Трансформаторы тока должны быть правильно установлены и закреплены в месте измерений, чтобы минимизировать влияние внешних факторов.
  2. Регулярная калибровка: Регулярная калибровка и проверка точности трансформаторов тока помогут обнаружить и исправить возможные неточности в измерениях.
  3. Защита от внешних воздействий: Трансформаторы тока следует защищать от механических повреждений, воздействия окружающей среды и воздействия сильных магнитных полей.
  4. Магнитные экраны: В некоторых случаях использование магнитных экранов может помочь снизить влияние внешних магнитных полей.
  5. Устранение помех: Для устранения электромагнитных помех рекомендуется использовать экранированные кабели и другие методы подавления помех.
  6. Проверка нагрузки: Регулярная проверка нагрузки на вторичной обмотке поможет обнаружить и устранить возможные проблемы с точностью измерений.

Важно обращаться к профессионалам и специалистам для правильного выбора, установки и обслуживания трансформаторов тока

Правильные меры предосторожности и устранение неполадок помогут обеспечить точность измерений и надежную работу трансформаторов в электрических системах

Понравилась статья? Поделиться с друзьями:
Журнал «Наш дворик»
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: