Таблица квадратов натуральных чисел от 1 до 100

Таблица степеней

Таблица квадратов натуральных чисел 1 до 100

12 = 1
22 = 4
32 = 9
42 = 16
52 = 25
62 = 36
72 = 49
82 = 64
92 = 81
102 = 100
112 = 121
122 = 144
132 = 169
142 = 196
152 = 225
162 = 256
172 = 289
182 = 324
192 = 361
202 = 400
212 = 441
222 = 484
232 = 529
242 = 576
252 = 625
262 = 676
272 = 729
282 = 784
292 = 841
302 = 900
312 = 961
322 = 1024
332 = 1089
342 = 1156
352 = 1225
362 = 1296
372 = 1369
382 = 1444
392 = 1521
402 = 1600
412 = 1681
422 = 1764
432 = 1849
442 = 1936
452 = 2025
462 = 2116
472 = 2209
482 = 2304
492 = 2401
502 = 2500
512 = 2601
522 = 2704
532 = 2809
542 = 2916
552 = 3025
562 = 3136
572 = 3249
582 = 3364
592 = 3481
602 = 3600
612 = 3721
622 = 3844
632 = 3969
642 = 4096
652 = 4225
662 = 4356
672 = 4489
682 = 4624
692 = 4761
702 = 4900
712 = 5041
722 = 5184
732 = 5329
742 = 5476
752 = 5625
762 = 5776
772 = 5929
782 = 6084
792 = 6241
802 = 6400
812 = 6561
822 = 6724
832 = 6889
842 = 7056
852 = 7225
862 = 7396
872 = 7569
882 = 7744
892 = 7921
902 = 8100
912 = 8281
922 = 8464
932 = 8649
942 = 8836
952 = 9025
962 = 9216
972 = 9409
982 = 9604
992 = 9801
1002 = 10000

Игры для учебы таблицы умножения

Игровая форма – самая удобная для запоминания. Развлечения помогут понять ребенку, что математика – это весело. Играя вместе с детьми, родители получают способ, как помочь быстро выучить и запомнить таблицу умножения школьнику.

Снегопад

Делают из бумаги снежинки, в центре которых рисуют квадраты. Большие фигуры чертят на меньшие квадраты, по периметру их проставляют цифры. Ребенок собирает снежинки и считает количество квадратиков в каждой из них. Школьник быстро поймет, что умножать проще, чем пересчитывать каждую клетку.

Битва прямоугольников

Игра направлена на понимание законов умножения, выяснения площади прямоугольника. Берут 2 кубика, листы бумаги в клетку и фломастеры. Игроки выбирают цвет фломастера и начинают играть:

  1. Первый кидает 2 кубика. Отмечает на листе прямоугольник или квадрат. Стороны фигур считает по клеткам, их будет по числам на кубиках.
  2. В середине фигуры пишут площадь фигуры – количество клеток, которые она занимает.
  3. Затем в игру вступает следующий игрок. Действия аналогичные.
  4. Выигрывает тот, чьи фигуры занимают большую площадь листа.

Рыбалка

Игра подразумевает «вылавливание рыб» в количестве, кратном 2 или 3. Сначала подготавливают необходимые материалы:

  • большой лист клетчатой бумаги с нарисованными рыбками и животными (или находят готовый);
  • карточки – рыбки;
  • кубик;
  • фишки;
  • листок бумаги с ручкой.

Действия игроков:

  1. Бросают кубик, перемещая фишки по полю. Как только на клетку выпадает рыбка, игрок кладет себе количество «рыбок» – карточек по числу на нарисованной фигурке.
  2. Если фишка останавливается на изображении животного, игрок не получает рыбок.
  3. В конце игры подсчитывают «улов».

Карточки

На обычных квадратиках из картона пишут примеры умножения без ответов. Перемешивают и дают вытягивать ребенку. Если школьник ответил правильно, он забирает карточку, неверный ответ – возвращает в коробку. Разнообразит игру ответ на время, выдача призов за «рекорд дня» и пр. За неверные ответы тоже делать «наказание» – прочитать стишок или убрать игрушки.

Декартова таблица умножения

Декартовы таблицы умножения — это еще один способ представления таблиц умножения. Чтобы построить его, мы сначала строим таблица с 11 строками и 11 столбцамиs, пронумеровав по следующему рисунку:

×

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

Теперь, чтобы найти элементы, занимающие каждое место в таблице, мы умножаем значение строки на значение столбца:

Декартова таблица умножения

Записав только результаты произведений, мы получим следующую декартову таблицу:

×

1

2

3

4

5

6

7

8

9

10

1

1

2

3

4

5

6

7

8

9

10

2

2

4

6

8

10

12

14

16

18

20

3

3

6

9

12

15

18

21

24

27

30

4

4

8

12

16

20

24

28

32

36

40

5

5

10

15

20

25

30

35

40

45

50

6

6

12

18

24

30

36

42

48

54

60

7

7

14

21

28

35

42

49

56

63

70

8

8

16

24

32

40

48

56

64

72

80

9

9

18

27

36

45

54

63

72

81

90

10

10

20

30

40

50

60

70

80

90

100

Квадратное уравнение и формула разложения квадратного трехчлена на множители

Пусть квадратное уравнение имеет вид:

Тогда дискриминант находят по формуле:

Если D > 0, то квадратное уравнение имеет два корня, которые находят по формуле:

Если D = 0, то квадратное уравнение имеет один корень (его кратность: 2), который ищется по формуле:

Если D < 0, то квадратное уравнение не имеет корней. В случае когда квадратное уравнение имеет два корня, соответствующий квадратный трехчлен может быть разложен на множители по следующей формуле:

Если квадратное уравнение имеет один корень, то разложение соответствующего квадратного трехчлена на множители задается следующей формулой:

Только в случае если квадратное уравнение имеет два корня (т.е. дискриминант строго больше ноля) выполняется Теорема Виета. Согласно Теореме Виета, сумма корней квадратного уравнения равна:

Произведение корней квадратного уравнения может быть вычислено по формуле:

Парабола

График параболы задается квадратичной функцией:

При этом координаты вершины параболы могут быть вычислены по следующим формулам. Икс вершины:

Игрек вершины параболы:

Таблица умножения и деления

Файлы: 

Вложение Размер
Таблица умножения и деления, картинка с пояснением 74.46 КБ
Таблица умножения и деления 105.44 КБ
Таблица умножения и деления без ответов 19.53 КБ

Чтобы скачать и рапсечатать таблицу умножения и деления, используйте ссылки выше или нажмите правую кнопку мышки над картинками ниже и выберите «сохранить картинку как».

Таблица умножения и деления без ответов.

Тип:

материал

  • Все тесты. Проверка. Тренажер таблицы умножения.
    • Умножение на 1. Все тесты.
      • Умножение на 1 (ввести ответ
      • Умножение на 1 (двусторонние карточки
      • Умножение на 1 (двусторонние карточки
      • Умножение на 1 (карточки
      • Умножение на 1 (карточки
      • Умножение на 1 (найти ответ
      • Умножение на 1 (найти ответ
    • Умножение на 2. Все тесты.
      • Умножение на 2 (ввести ответ
      • Умножение на 2 (ввести ответ
      • Умножение на 2 (двусторонние карточки
      • Умножение на 2 (двусторонние карточки
      • Умножение на 2 (карточки
      • Умножение на 2 (карточки
      • Умножение на 2 (найти ответ
      • Умножение на 2 (найти ответ
    • Умножение на 3. Все тесты.
      • Умножение на 3 (ввести ответ
      • Умножение на 3 (ввести ответ
      • Умножение на 3 (двусторонние карточки
      • Умножение на 3 (двусторонние карточки
      • Умножение на 3 (карточки
      • Умножение на 3 (карточки
      • Умножение на 3 (найти ответ
      • Умножение на 3 (найти ответ
    • Умножение на 4. Все тесты.
      • Умножение на 4 (ввести ответ
      • Умножение на 4 (ввести ответ
      • Умножение на 4 (двусторонние карточки
      • Умножение на 4 (двусторонние карточки
      • Умножение на 4 (карточки
      • Умножение на 4 (карточки
      • Умножение на 4 (найти ответ
      • Умножение на 4 (найти ответ
    • Умножение на 5. Все тесты.
      • Умножение на 5 (ввести ответ
      • Умножение на 5 (ввести ответ
      • Умножение на 5 (двусторонние карточки
      • Умножение на 5 (двусторонние карточки
      • Умножение на 5 (карточки
      • Умножение на 5 (карточки
      • Умножение на 5 (найти ответ
      • Умножение на 5 (найти ответ
    • Умножение на 6. Все тесты.
      • Умножение на 6 (ввести ответ
      • Умножение на 6 (ввести ответ
      • Умножение на 6 (двусторонние карточки
      • Умножение на 6 (двусторонние карточки
      • Умножение на 6 (карточки
      • Умножение на 6 (карточки
      • Умножение на 6 (найти ответ
      • Умножение на 6 (найти ответ
    • Умножение на 7. Все тесты.
      • Умножение на 7 (ввести ответ
      • Умножение на 7 (ввести ответ
      • Умножение на 7 (двусторонние карточки
      • Умножение на 7 (двусторонние карточки
      • Умножение на 7 (карточки
      • Умножение на 7 (карточки
      • Умножение на 7 (найти ответ
      • Умножение на 7 (найти ответ
    • Умножение на 8. Все тесты.
      • Умножение на 8 (ввести ответ
      • Умножение на 8 (ввести ответ
      • Умножение на 8 (двусторонние карточки
      • Умножение на 8 (двусторонние карточки
      • Умножение на 8 (карточки
      • Умножение на 8 (карточки
      • Умножение на 8 (найти ответ
      • Умножение на 8 (найти ответ
    • Умножение на 9. Все тесты.
      • Умножение на 9 (ввести ответ
      • Умножение на 9 (ввести ответ
      • Умножение на 9 (двусторонние карточки
      • Умножение на 9 (двусторонние карточки
      • Умножение на 9 (карточки
      • Умножение на 9 (карточки
      • Умножение на 9 (найти ответ
      • Умножение на 9 (найти ответ
    • Умножение на 10. Все тесты.
      • Умножение на 10 (ввести ответ
      • Умножение на 10 (ввести ответ
      • Умножение на 10 (двусторонние карточки
      • Умножение на 10 (двусторонние карточки
      • Умножение на 10 (карточки
      • Умножение на 10 (карточки
      • Умножение на 10 (найти ответ
      • Умножение на 10 (найти ответ
    • Тест-тренажер онлайн! Таблица умножения
    • Тест-тренажер онлайн! Таблица умножения. 10 вопросов.
  • Умножение
    • Умножение на 1
    • Умножение на 2
    • Умножение на 3
    • Умножение на 4
    • Умножение на 5
    • Умножение на 6
    • Умножение на 7
    • Умножение на 8
    • Умножение на 9
    • Умножение на 10
  • Таблица умножения до 20 и до 100
  • Таблица умножения и деления
  • Умножение в столбик
  • Еще
    • Таблица сложения
    • Линейка
    • Без ответов
    • Таблица кубов
    • Таблица степеней
    • Калькуляторы
      • Умножение
      • Найти неизвестный множитель
      • Деление
      • Сложение
      • Кубов
    • Шпаргалка

Таблица степеней первых натуральных чисел

Начнем с таблицы для нахождения степеней натуральных чисел от $2$ до $12$ по степеням от $1$ до $10$ (таблица 1)

Обратите внимание, что мы не приводим степени $1$, потому что единица будет равна самой себе в любой степени

Нужно найти значения из этой таблицы следующим образом: В первом столбце находим число, степень которого нас интересует. Запоминаем номер этой строки. Итак, в первом члене находим показатель степени и запоминаем найденный столбец. Пересечение найденной строки и столбца даст нам ответ.

Тренируйте свой мозг с удовольствием Развивайте память, внимание и мышление с помощью онлайн-тренажеров. Выберите программуПример 1. Найдите $8^7$

Найдите $8^7$

Решение.

Находим число $8$ в первом столбце: получаем восьмую строку.

Находим число $7$ в первой строке: получаем восьмой столбец.

Мы видим, что число $2097152$ находится на их пересечении. Поэтому

$8^7=2097152$

Игры при изучении таблицы умножения

Карточки

Чтобы использовать для изучения таблицы умножения карточки нужно подготовить их с примерами без ответов. Дальше вы их перемешиваете, и ребёнок тянет каждый раз по одной карточке. Он должен сказать правильный ответ на указанный пример, в этом случае карточку нужно отложить в сторону. Если ребёнок не ответил или дал неправильный ответ на карточку, то она возвращается в стопку.

К такой игре можно вносить изменения, например, давать ответы в течение определенного количества времени, или подсчитывать сколько каждый день был правильных ответов, чтобы ребёнок хотел увеличить количество правильных ответов.

Также за неправильный ответ на пример можно давать ребёнку небольшое задание

Например, рассказать какое-нибудь стихотворение или прибраться у себя в комнате. А вот тогда, когда ребёнок ответил на вопросы по всем карточкам, стоит вручить ему небольшой, но приятный подарок.

Когда ребёнок освоил основные правила и примеры таблицы умножения, можно организовать обратную игру с карточками. Вы также готовите карточки, только вместо примеров вы на них пишите ответы, например число 20. Ребёнок же должен вам назвать 2-3 примера, то есть те числа, которые при умножении дадут результат 20, например 2 умножить на 10, или 4 умножить на 5.

Для наглядности можно использовать примеры из жизни, и обсуждать с ребенком вещи, которыми он интересуется. Например, можно спросить, сколько колёс нужно 4 машинкам. Также можно взять палочки для счёта, фломастеры или кубики, которые также можно складывать и умножать.

Если ребёнок совсем не может выучить какой-то пример по умножению, и постоянно путает ответ, можно упростить процесс запоминания и использовать лёгкие стихи. Например, 8 медведей рубили дрова, 8 на 9 равно 72. Так ребенку будет легче постепенно запомнить пример из жизни.

Таблица пифагора от 1 до 20

× 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
3 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60
4 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
5 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
6 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120
7 7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 112 119 126 133 140
8 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160
9 9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 144 153 162 171 180
10 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
11 11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 176 187 198 209 220
12 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216 228 240
13 13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 208 221 234 247 260
14 14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 224 238 252 266 280
15 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300
16 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 272 288 304 320
17 17 34 51 68 85 102 119 136 153 170 187 204 221 238 255 272 289 306 323 340
18 18 36 54 72 90 108 126 144 162 180 198 216 234 252 270 288 306 324 342 360
19 19 38 57 76 95 114 133 152 171 190 209 228 247 266 285 304 323 342 361 380
20 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

Превращаем 100 примеров в 36

Таблица умножения на обратной стороне большинства тетрадок выглядит так:

На то, чтобы её выучить, может уйти целое лето. Понятно, что механическое заучивание правильных ответов к сотне примеров — самый трудоёмкий способ запомнить результаты умножения чисел до 10 друг на друга.

Процесс в разы ускоряется, когда мы показываем, как все эти 100 сочетаний можно сократить до 36. В этом деле куда более удачным наглядным пособием служит таблица Пифагора:

На её примере уже можно показать принципы умножения через площади небольших прямоугольников:

• 3 * 5 = 15, потому что в прямоугольник со сторонами длиной 3 и 5 клеточек помещается 15 маленьких квадратиков (считаем их вместе, чтобы убедиться).

• 5 * 3 = 15 по той же причине (считаем вместе).

Здесь же наглядно демонстрируем свойство коммутативности: от перестановки мест множителей произведение не меняется. Разумеется, название этого свойства лучше придержать до Хеллоуина, чтобы не пугать никого раньше времени

Из-за этого таблица Пифагора симметрична относительно своей диагонали, поэтому из 100 примеров для запоминания остаётся уже 55: сама диагональ с значениями 1, 4, 9, …, 100 и всё, что находится выше или ниже.

Это открытие можно сделать самостоятельно, заполнив часть пустой таблицы Пифагора, в которой изначально отмечены только множители:

 

Ребёнок может начать заполнять её, даже если ещё не знает правил умножения — складывать ведь он уже умеет, поэтому без труда посчитает сначала 2 + 2, потом 4 + 2, потом 6 + 2, и так, вплоть до 20. Потом ряд с тройками, и так далее.

Заполнив только часть таблицы (например, квадрат 6 * 6 клеток), уже можно увидеть одинаковые числа и понять, что зубрить её целиком совсем не нужно.

После этого на той же таблице Пифагора демонстрируем два принципа, позволяющие «автоматизировать» ещё 19 операций на умножение: умножение на 1 и умножение на 10:

• Если число умножить на единицу, оно никак не меняется.

• Если число умножить на 10, у него появляется ноль на конце.

Отнимаем от оставшихся ранее 55 примеров на умножение ещё 19 «автоматизированных» и получаем всего 36 сочетаний, которые нужно запомнить. Почти втрое меньше, чем предлагают нам на обложках тетрадок!

Уже легче, не так ли?

Таблица квадратов натуральных чисел 200 до 300

2012 = 40 401
2022 = 40 804
2032 = 41 209
2042 = 41 616
2052 = 42 025
2062 = 42 436
2072 = 42 849
2082 = 43 264
2092 = 43 681
2102 = 44 100

2112 = 44 521
2122 = 44 944
2132 = 45 369
2142 = 45 796
2152 = 46 225
2162 = 46 656
2172 = 47 089
2182 = 47 524
2192 = 47 961
2202 = 48 400

2212 = 48 841
2222 = 49 284
2232 = 49 729
2242 = 50 176
2252 = 50 625
2262 = 51 076
2272 = 51 529
2282 = 51 984
2292 = 52 441
2302 = 52 900

2312 = 53 361
2322 = 53 824
2332 = 54 289
2342 = 54 756
2352 = 55 225
2362 = 55 696
2372 = 56 169
2382 = 56 644
2392 = 57 121
2402 = 57 600

2412 = 58 081
2422 = 58 564
2432 = 59 049
2442 = 59 536
2452 = 60 025
2462 = 60 516
2472 = 61 009
2482 = 61 504
2492 = 62 001
2502 = 62 500

2512 = 63 001
2522 = 63 504
2532 = 64 009
2542 = 64 516
2552 = 65 025
2562 = 65 536
2572 = 66 049
2582 = 66 564
2592 = 67 081
2602 = 67 600

2612 = 68 121
2622 = 68 644
2632 = 69 169
2642 = 69 696
2652 = 70 225
2662 = 70 756
2672 = 71 289
2682 = 71 824
2692 = 72 361
2702 = 72 900

2712 = 73 441
2722 = 73 984
2732 = 74 529
2742 = 75 076
2752 = 75 625
2762 = 76 176
2772 = 76 729
2782 = 77 284
2792 = 77 841
2802 = 78 400

2812 = 78 961
2822 = 79 524
2832 = 80 089
2842 = 80 656
2852 = 81 225
2862 = 81 796
2872 = 82 369
2882 = 82 944
2892 = 83 521
2902 = 84 100

2912 = 84 681
2922 = 85 264
2932 = 85 849
2942 = 86 436
2952 = 87 025
2962 = 87 616
2972 = 88 209
2982 = 88 804
2992 = 89 401
3002 = 90 000

Учить таблицу умножения – игра

Попробуйте нашу обучающую электронную игру. Используя её, вы уже завтра сможете решать математические задачи в классе у доски без ответов, не прибегая к табличке, чтобы умножить числа. Стоит только начать играть, и уже минут через 40 будет отличный результат. А для закрепления результата тренируйтесь несколько раз, не забывая о перерывах. В идеале – каждый день (сохраните страницу, чтобы не потерять). Игровая форма тренажера подходит как для мальчиков, так и для девочек.

Таблица умножения – таблица, где строки и столбцы озаглавлены множителями (1, 2, 3, 4, 5…), а ячейки таблицы содержат их произведение. Применяется таблица для обучения умножению. Здесь есть игра и картинка для печати.

Как на калькуляторе посчитать в квадрате?

Найти с помощью калькулятора квадрат числа 11052:

  1. Шаг 1. Набрать на калькуляторе число, которое нужно возвести в квадрат. В нашем случае — это число 11052.
  2. Шаг 2. Нажать кнопку умножить: «*».
  3. Шаг 3. Нажать кнопку равно: «=». Полученное число и будет квадратом числа.

Чтобы найти квадрат числа, введите это число в калькулятор, а затем нажмите кнопку “x 2 “. “1/X” – деление числа 1 на текущее число. Чтобы разделить число 1 на текущее число, введите это число в калькулятор, а затем нажмите кнопку “1/X”.”%” – вычисление процента от числа.” √” – вычисление квадратного корня. Чтобы найти квадратный корень числа, введите это число в калькулятор, а затем нажмите кнопку “√”.

Дополнительные формулы сокращенного умножения

Есть три основные дополнительные ФСУ – это бином Ньютона, формула возведения в квадрат суммы трех, четырех и более слагаемых, а также формула разности n-ых степеней двух слагаемых. Коротко о каждой из них.

Бином Ньютона

Бином Ньютона – это формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных. Выглядит она следующим образом:

Ck в степени n – это биноминальные коэффициенты, стоящие в строке под номером n в треугольнике Паскаля. Вычисляются эти коэффициенты по формуле:

Иначе говоря, ФСУ для квадрата и куба разности и суммы являются частными случаями формулы бинома Ньютона при n=2 и n=3 соответственно.

Однако может быть так, что слагаемых в сумме, которую нужно возвести в степень, больше, чем два. В таком случае подойдет формула квадрата суммы трех, четырех и более слагаемых.

Формула возведения в квадрат суммы трех, четырех и более слагаемых

Как и было сказано, формула возведения в квадрат суммы трех, четырех и более слагаемых нужна, когда слагаемых в сумме, которую нужно возвести в степень, больше, чем два.

Выглядит она так:

Читать и запоминать эту формулу нужно следующим образом: квадрат суммы n слагаемых равен сумме квадратов всех слагаемых и удвоенных произведений всех возможных пар этих слагаемых.

Формула разности n-ых степеней двух слагаемых

И последняя формула – это формула разности n-ых степеней двух слагаемых, выглядящая вот так:

Как правило, данную формулу разделяют на две отдельные: для четных и нечетных степеней.

Формула для четных показателей 2m:

Формула для нечетных показателей 2m + 1:

Несложно догадаться, что ФСУ разности квадратов и кубов являются частными случаями данной формулы при n=2 и n=3 соответственно. А для разности кубов b заменяется на –b.

Рассмотренные нами ФСУ и дополнительные ФСУ обязательно помогут вам быстрее справляться с математическими задачами и занимать свой мозг полезной деятельностью.

Вопросы и ответы

И напоследок несколько ответов на часто задаваемые вопросы.

Для чего нужны формулы сокращенного умножения?

Формулы сокращенного умножения нужны, чтобы упростить и ускорить вычисления, а также для улучшения наглядности и понимания математических выражений.

В настоящее время ФСУ широко используются в образовании и науке, а также в практической жизни. Они применяются в различных областях, таких как математика, физика, химия и инженерия, плюс могут применяться к решению различных задач, например, в области финансов, менеджмента и исследования данных.

Как появились формулы сокращенного умножения?

Формулы сокращенного умножения появились в результате исследований математиков в области алгебры и арифметики и основаны на использовании их свойств, таких как коммутативность, ассоциативность и дистрибутивность.

Если обратиться к истории, можно узнать, что такими формулами пользовались еще в Древнем Вавилоне и Древнем Египте. Первым же, кто доказал математическую закономерность квадрата суммы, был древнегреческий ученый Евклид, живший в III веке до н.э. А на общепринятом языке математические формулы были обоснованы Исааком Ньютоном.

Сколько всего формул сокращенного умножения?

Не существует точного количества формул сокращенного умножения, т.к. их можно создавать неограниченное количество. Но в основном изучают и используют семь основных формул. Это квадрат суммы, квадрат разности, разность квадратов, сумма кубов, разность кубов, куб суммы и куб разности. Также распространено применения трех дополнительных ФСУ, таких как бином Ньютона, формула возведения в квадрат суммы трех, четырех и более слагаемых и формула разности n-ых степеней двух слагаемых.

Почему формулы сокращенного умножения изучают на алгебре в 7 классе?

Формулы сокращенного умножения изучаются на алгебре в 7 классе, потому что именно на этом этапе школьники знакомятся с понятием многочлена и действиям с ним. Кроме того, ФСУ являются важным и основным инструментом для решения математических задач и упрощения вычислений.

Формулы помогают ученикам развить навыки в решении простых задач, а также дают им навыки для решения более сложных задач в будущем, что в перспективе способно помочь молодым людям в их дальнейшем обучении и карьере.

Можно ли не использовать формулы сокращенного умножения?

Конечно, при решении математических задач можно и не использовать формулы сокращенного умножения. Однако без них процесс решения может оказаться очень трудоемким и долгим. ФСУ же заметно упрощают его и помогают справляться с заданиями намного быстрее.

Помимо прочего, ФСУ входят в обязательную школьную программу, вследствие чего преподаватели часто требуют от учеников, во-первых, знать эти формулы наизусть, а во-вторых, решать задания именно с их помощью.

Геометрия на плоскости (планиметрия)

Пусть имеется произвольный треугольник:

Тогда, сумма углов треугольника:

Площадь треугольника через две стороны и угол между ними:

Площадь треугольника через сторону и высоту опущенную на неё:

Полупериметр треугольника находится по следующей формуле:

Формула Герона для площади треугольника:

Площадь треугольника через радиус описанной окружности:

Формула медианы:

Свойство биссектрисы:

Формулы биссектрисы:

Основное свойство высот треугольника:

Формула высоты:

Еще одно полезное свойство высот треугольника:

Теорема косинусов:

Теорема синусов:

Радиус окружности, вписанной в правильный треугольник:

Радиус окружности, описанной около правильного треугольника:

Площадь правильного треугольника:

Теорема Пифагора для прямоугольного треугольника (c — гипотенуза, a и b — катеты):

Радиус окружности, вписанной в прямоугольный треугольник:

Радиус окружности, описанной вокруг прямоугольного треугольника:

Площадь прямоугольного треугольника (h — высота опущенная на гипотенузу):

Свойства высоты, опущенной на гипотенузу прямоугольного треугольника:

Длина средней линии трапеции:

Площадь трапеции:

Площадь параллелограмма через сторону и высоту опущенную на неё:

Площадь параллелограмма через две стороны и угол между ними:

Площадь квадрата через длину его стороны:

Площадь квадрата через длину его диагонали:

Площадь ромба (первая формула — через две диагонали, вторая — через длину стороны и угол между сторонами):

Площадь прямоугольника через две смежные стороны:

Площадь произвольного выпуклого четырёхугольника через две диагонали и угол между ними:

Связь площади произвольной фигуры, её полупериметра и радиуса вписанной окружности (очевидно, что формула выполняется только для фигур в которые можно вписать окружность, т.е. в том числе для любых треугольников):

Свойство касательных:

Свойство хорды:

Теорема о пропорциональных отрезках хорд:

Теорема о касательной и секущей:

Теорема о двух секущих:

Теорема о центральном и вписанном углах (величина центрального угла в два раза больше величины вписанного угла, если они опираются на общую дугу):

Свойство вписанных углов (все вписанные углы опирающиеся на общую дугу равны между собой):

Свойство центральных углов и хорд:

Свойство центральных углов и секущих:

Условие, при выполнении которого возможно вписать окружность в четырёхугольник:

Условие, при выполнении которого возможно описать окружность вокруг четырёхугольника:

Сумма углов n-угольника:

Центральный угол правильного n-угольника:

Площадь правильного n-угольника:

Длина окружности:

Длина дуги окружности:

Площадь круга:

Площадь сектора:

Площадь кольца:

Площадь кругового сегмента:

Таблица квадратов двузначных чисел

0 2 = 0
1 2 = 1
2 2 = 4
3 2 = 9
4 2 = 16
5 2 = 25
6 2 = 36
7 2 = 49
8 2 = 64
9 2 = 81
10 2 = 100
11 2 = 121
12 2 = 144
13 2 = 169
14 2 = 196
15 2 = 225
16 2 = 256
17 2 = 289
18 2 = 324
19 2 = 361
20 2 = 400
21 2 = 441
22 2 = 484
23 2 = 529
24 2 = 576
25 2 = 625
26 2 = 676
27 2 = 729
28 2 = 784
29 2 = 841
30 2 = 900
31 2 = 961
32 2 = 1024
33 2 = 1089
34 2 = 1156
35 2 = 1225
36 2 = 1296
37 2 = 1369
38 2 = 1444
39 2 = 1521
40 2 = 1600
41 2 = 1681
42 2 = 1764
43 2 = 1849
44 2 = 1936
45 2 = 2025
46 2 = 2116
47 2 = 2209
48 2 = 2304
49 2 = 2401
50 2 = 2500
51 2 = 2601
52 2 = 2704
53 2 = 2809
54 2 = 2916
55 2 = 3025
56 2 = 3136
57 2 = 3249
58 2 = 3364
59 2 = 3481
60 2 = 3600
61 2 = 3721
62 2 = 3844
63 2 = 3969
64 2 = 4096
65 2 = 4225
66 2 = 4356
67 2 = 4489
68 2 = 4624
69 2 = 4761
70 2 = 4900
71 2 = 5041
72 2 = 5184
73 2 = 5329
74 2 = 5476
75 2 = 5625
76 2 = 5776
77 2 = 5929
78 2 = 6084
79 2 = 6241
80 2 = 6400
81 2 = 6561
82 2 = 6724
83 2 = 6889
84 2 = 7056
85 2 = 7225
86 2 = 7396
87 2 = 7569
88 2 = 7744
89 2 = 7921
90 2 = 8 100
91 2 = 8281
92 2 = 8464
93 2 = 8649
94 2 = 8836
95 2 = 9025
96 2 = 9216
97 2 = 9409
98 2 = 9604
99 2 = 9801

02=0=0

Таблица квадратов натуральных чисел от $10$ до $99$

Другой популярной таблицей является таблица квадратов чисел от $10$ до $99$ (табл. 4), то есть всех десятичных чисел.

Необходимо найти значения из этой таблицы следующим образом: В первом столбце находим количество десятков интересующего нас числа. Запомните число в этой строке. Итак, в первом слагаемом находим количество единиц интересующего числа и запоминаем найденный столбец. Пересечение найденной строки и столбца даст нам ответ.

Пример 3

Найдите $37^2$

Решение.

Находим число $3$ в первом столбце: получаем 4 строку.

Находим число $7$ в первой строке: получаем восьмой столбец.

Мы видим, что на их пересечении число $1369$. Поэтому

37$^2=1369$

Кто создал таблицу квадратов?

Иногда изобретение таблицы умножения приписывают Пифагору, в честь которого она названа в различных языках, включая французский, итальянский и русский. В 493 году Викторий Аквитанский создал таблицу из 98 столбцов, которая представляла в римских числах результат перемножения чисел от 2 до 50.

Пифагор изучил в Египте, а потом привез в Европу цифровые матрицы, известные ранее только узкому кругу избранных. В адаптированном варианте тайные таблицы дошли до наших дней и ныне известны как квадрат Пифагора. Пифагор не оставил после себя собрания сочинений, он держал своё учение в тайне и передавал ученикам устно. Учёные утверждают, что квадрат Пифагора дает возможность точно определить сильные и слабые стороны человеческой натуры.

Таблица степеней чисел до 100 в кубе

Часто в примерах требуется возвести двузначное число в куб. Сделать это будет проще со следующей таблицей:

*Для лучшего понимания примеры подсвечены голубым.

Пример 4. Работаем с таблицей натуральных степеней чисел в кубе.

Задача. Найти 453.

Решение. Делим число на десятки и единицы. Находим 4 десятка (левый столбец) и 5 единиц (верхняя полоса) и ищем значение их пересечения.

Ответ. 157464.

Пример 5. Вычисляем квадрат по таблице.

Задача. Найти 403.

Решение. Найти значение можно двумя способами. Первый — руководствуясь таблицей. 4 — десятки, 0 — единицы. Ищем пересечение этих цифр. Результат — 6400. Второй способ: возводим 4 в куб и прибавляем два нуля (т.к. 10 в кубе = 100). 43=64. Прибавляем «00» и получаем идентичный ответ: 6400.

Ответ. 6400.

Пользоваться таблицами степеней по математике несложно. Но только в том случае, если речь идет о небольших цифрах. В длинных примерах, состоящих из множества чисел в степенях, можно использовать онлайн калькуляторы. Это позволит избежать ошибок, которые могут быть вызваны просмотром не той ячейки.

Понравилась статья? Поделиться с друзьями:
Журнал «Наш дворик»
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: