Открытия, которые изменили мир: революционные научные достижения

Открытие электрического тока

Встряхивание генеалогического дерева человечества

В 2010 году Ли Бергер представил далекого предка по имени Australopithecus sediba. Пять лет спустя он объявил, что в южноафриканской пещерной системе «Колыбель человечества» обнаружены окаменелости нового вида: Homo naledi, гоминида, чья «мозаичная» анатомия напоминает как современных людей, так и гораздо более древних родственников.

Последующее исследование также показало, что H. naledi удивительно молод, живя по крайней мере между 236 000 и 335 000 лет назад. Другие замечательные открытия были сделаны в Азии. В 2010 году группа ученых объявила, что ДНК, извлеченная из древней сибирской кости, не похожа ни на одну из ДНК современного человека, что стало первым свидетельством происхождения потомков, называемых теперь денисовцами. В 2018 году в Китае были обнаружены каменные орудия возрастом 2,1 миллиона лет, что подтверждает, что производители инструментов распространились в Азии на сотни тысяч лет раньше, чем считалось ранее. В 2019 году исследователи на Филиппинах объявили об окаменелостях Homo luzonensis, нового типа гоминина, похожего на Homo floresiensis.

The Human Family Tree

Пенициллин

Пенициллин был первым антибиотиком, созданным учеными. Его изобрёл шотландский ученый Александр Флеминг в 1928 году, когда чашка с бактериями, с которой он работал в лаборатории, покрылась плесенью. Флеминг заметил, что грибы уничтожили бактерии, и пришел к выводу о выделении ими вещества, убивающего стафилококк. Он назвал это вещество пенициллином (от названия рода грибов Penicillium).

Открытие пенициллина спасло миллионы жизней и помогло создать множество других антибиотиков и важных препаратов. Пенициллин и по сей день остается самым популярным из них. Можно сказать, если бы не открытие антибиотиков, такие болезни, как ангина, язва желудка и абсцессы, по-прежнему имели бы летальный исход.

Как работает электричество, электризация

Положительный и отрицательный ионы

Как уже было отмечено, по умолчанию, атом электрически нейтрален: положительный и отрицательный заряды равны. Они компенсируют другу друга. Но, если, вдруг, представить себе, что хотя-бы один электрон покинет сове место в атоме, то суммарный положительный электрический заряд протонов превысит отрицательный заряд всех оставшихся электронов. Поэтому такой атом в целом имеет свойства положительного заряда и называется положительный ион.

Электризация

Атом, получивший дополнительный электрон, будет иметь в преобладающей степени отрицательный заряд. В этом случае атом называется отрицательный ион.

Следует заметить, что не только атом будет иметь положительный или отрицательный заряд, но и молекула, а соответственно и вещество, которое содержит данный атом.

Электризация

Электризацией называют процесс получения дополнительного электрона, либо наоборот его потерю. Если какое-либо тело имеет избыток или нехватку электронов, то есть явно выраженный заряд какого либо знака, то говорят, что тело наэлектризовано.

Опытным путем установлено, что заряды одного знака отталкиваются, а разных знаков притягиваются. Подобный опыт можно повторить следующим очень известным образом: подвесить на нити два металлических шарика, которые изначально имеют нейтральный заряд. Далее придать одному шарику положительный заряд, а второму отрицательный. В результате шарики притянутся друг к другу. Если двум шарикам сообщить заряд одного знака, то они будут отталкиваться.

Электризация трением

А вот, при натирании стеклянной палочки шелком, все происходит наоборот. Электроны поверхностного слоя стекла покидают палочку. В этом случае стеклянная палочка приобретает положительный заряд за счет перевеса суммарного заряда протонов.

Электризация металла

Если мы возьмем хорошо проводящий материал, например кусок металла, то при натирании его о диэлектрик, образовавшийся на поверхности металла заряд, мгновенно уйдет в землю через наше тело и другие предметы. Поскольку в отличии от рассматриваемых диэлектриков наше тело обладает относительно хорошей проводимостью и по нему сравнительно легко перемещаются заряды.

Опыт электризации трением не получится оценить и в том случае, когда мы возьмём два металлических предмета даже с хорошо изолированными рукоятками. При взаимном трении металл об металл, как и в предыдущих опытах возникнут свободные электроны. Однако вследствие наличия неизбежной шероховатости поверхностей, не получится одновременно по всей поверхности отделить оба металлических предмета. Так, в последней точке соприкосновения двух поверхностей электроны перетекут через так называемый «мостик» пока их количество снова не станет таким же, как и до натирания.

Статическое электричество

Итак, теперь нам известно, что при натирании рассмотренных предметов, некоторые электроны получают избыточную энергию. Затем они покидают атомы одного тела, которое становится положительно заряженным. Эти электроны занимают места на орбитах атомов другого вещества. Которое, в свою очередь, приобретает свойства отрицательного заряда. При этом одноименные заряды отталкиваются друг от друга, а разноименные – притягиваются. Силы, порождаемые зарядами, называются электрическими. А сам факт наличия электрических зарядов и их взаимодействие называют электричество.

В рассмотренных примерах получают так называемое статическое электричество.

Электрическая сила

В процессе электризации к заряженной пластмассовой палочке будут сами собой притягиваться кусочки бумаги. Почему это происходит?

Попробуем раскрыть тайну физического процесса. Она заключается в следующем. При поднесении заряженного тела к незаряженному телу под действием электрических сил происходит перемещение электронов к одному из краев тела. И этот край тела ввиду избытка электронов становится отрицательно заряженным. А противоположный край, соответственно, положительно заряженным. Средняя часть тела будет нейтрально заряженной. Таким образом, заряды смещаются по краям данного тела.

Ближе к поднесенному заряженному телу будут стремиться заряды противоположного знака. Например, если палочка заряжена положительно, то к ней притянется бумага. Той поверхностью, на которой скопились отрицательные заряды. И наоборот.

Формула закона Кулона

Общие сведения

Любое физическое тело состоит из молекул и атомов. Эти частицы взаимодействуют между собой. Они могут притягиваться друг к другу или отталкиваться. В изолированной системе элементарные частицы являются носителями заряда. В спокойном состоянии, то есть когда на тело не оказывается внешнего воздействия, алгебраическая сумма энергии частиц всегда постоянная величина. Это утверждение называется законом сохранения электрического заряда.

Частицы хаотично могут перемещаться по кристаллической решётке, но их движение компенсируется. Поэтому ток не возникает. Но если к телу приложить внешнюю силу, то свободные электроны начинают двигаться в одну сторону. Это упорядоченное движение заряженных частиц и называют электрическим током. Количественно его можно описать через силу.

Упорядочено заряды заставляет двигаться электрическое поле, вдоль линий которого и происходит перемещение. Впервые этот термин ввёл Фарадей. Он сумел выяснить, что вокруг любого носителя существует особый вид материи, влияющий на поведение других частиц. За силовую характеристику электрического поля было взято отношение действующей силы к величине заряда, помещённого в данную точку: E = F / q. Назвали эту характеристику напряжённостью.

Изучение поля позволило экспериментально открыть принцип суперпозиции. То есть установить, что напряжённость поля, созданного системой зарядов, равна геометрической сумме величин, существующих у отдельных носителейE = Σ E1 + E2 +…+ En. Напряжённость прямо пропорциональна напряжению, которое, в свою очередь, равняется разности потенциалов между двумя точками.

По сути, это работа электрического поля, совершаемая для переноса единичного заряда из одного места в другое: U = A / q = E * d, где d – расстояние между точками. Значение напряжения зависит от нескольких факторов:

  • строения тела;
  • температуры;
  • сопротивления.

Самое большее влияние оказывает последняя величина. Именно она характеризует способность материала препятствовать прохождению тока, то есть определяет проводимость. Сопротивление зависит от длины проводника и его сечения: R = (p * l) / S, где p – параметр обратный удельной проводимости (справочное значение). Он численно равняется сопротивляемости однородного проводника единичной длины и площади сечения.

Роль электромагнитной индукции в технике и науке

Электромагнитная индукция – это явление, заключающееся в появлении электрического тока в проводнике под воздействием изменяющегося магнитного поля. Оно стало основой для создания генераторов, трансформаторов и многих других устройств, которые являются неотъемлемой частью современных технологий.

Трансформаторы

Трансформаторы – это устройства, которые используют электромагнитную индукцию для изменения напряжения в электрической сети. Они позволяют увеличивать или уменьшать напряжение, что необходимо для передачи электроэнергии на большие расстояния и подключения различных устройств к сети.

Генераторы

Генераторы – это устройства, которые преобразуют механическую энергию в электричество. Они основаны на принципе электромагнитной индукции и позволяют получать электрическую энергию из различных источников, таких как водяные, ветровые или газовые турбины.

Электромагнитная совместимость

Электромагнитная совместимость – важный аспект в современной электронике, который изучает воздействие электромагнитных полей на работу различных устройств и систем. Понимание электромагнитной индукции позволяет разрабатывать электронные устройства, которые не подвержены электромагнитным помехам и могут работать вблизи друг друга без взаимных влияний.

Электромагнитная индукция также нашла применение в многих других областях, таких как электромагнитные измерения, медицинская техника, сенсорные технологии и даже в космической исследовательской деятельности. Без учета электромагнитной индукции было бы невозможно создание огромного числа устройств и систем, которые нам так необходимы в современном мире.

История открытия

Наши предки давно уже знали, что некоторые рыбы обладают способностью посылать электрические разряды, которые обездвиживают их добычу. А как насчет открытия «багдадской батареи» — говорят, что это первый химический источник энергии, который работал более двух с половиной тысяч лет назад.


Конечно, теория о том, что древний человек мог создать источник тока, имеет своих критиков. Они утверждают, что не нашли никаких устройств, которые могли бы работать от электричества. В конструкции батареи вся верхняя часть покрыта слоем смолы, что не позволяет предположить, что она использовалась как источник электроэнергии, а скорее напоминает обыкновенный контейнер. Электричество было формой энергии, которую не нужно было изобретать, а только открывать и изучать. История воздает должное Бенджамину Франклину, первооткрывателю. Бенджамин Франклин основоположник теории взаимодействия молнии и тока.

Искусственный интеллект

Мы часто смотрим на искусственный интеллект с точки зрения человека, например, на роботов, которые начинают думать самостоятельно (и, возможно, захватят мир), но для меня искусственный интеллект — это одно из величайших научных открытий всех времен, потому что он позволяет машинам учиться и обрабатывать больше информации, чем мы когда-либо могли, как люди.

Со всеми большими данными, генерируемыми проектами геномики и электронными медицинскими записями со всего мира, компьютеры с искусственным интеллектом могут научиться выявлять закономерности во всей этой информации, что приведет к более быстрым открытиям и огромным скачкам вперед в нашем понимании болезней и способов их лечения.

Глубокое машинное обучение использует «язык белков»

Безопасность и правила работы с электричеством:

Опасности электрического тока для человека

Электрический ток представляет серьезную опасность для здоровья и жизни человека. Основные риски при поражении электрическим током:

Электрический удар — сильный разряд тока, вызывающий судороги мышц, остановку дыхания, фибрилляцию сердца и даже смерть.

Ожоги — термические ожоги от нагретых проводников и электрической дуги, а также электрохимические ожоги при прохождении тока через тело.

Падения — непроизвольные мышечные сокращения при поражении током могут привести к падениям с высоты или на острые предметы.

Пожары и взрывы — от перегрева проводников и коротких замыканий при нарушении изоляции.

Опасность поражения зависит от силы тока, напряжения, времени воздействия и пути прохождения тока через тело.

Требования к защитным мерам и заземлению

Для предотвращения поражений электрическим током и обеспечения безопасной эксплуатации электрооборудования применяются следующие защитные меры:

  • Изоляция токоведущих частей — для предотвращения случайного прикосновения.
  • Оболочки и ограждения — для защиты от попадания внутрь токоведущих частей.
  • Заземление и зануление — для устранения напряжения на нетоковедущих металлических частях при пробое изоляции.
  • Защитное отключение — автоматическое отключение питания при утечке тока на землю.
  • Применение малых напряжений — до 42В для переносных инструментов и 12В для ручных.
  • Блокировки и сигнализация — для предотвращения доступа к токоведущим частям под напряжением.
  • Обязательным требованием является заземление корпусов электрооборудования и нулевых проводов сети для отвода тока утечки.

Правила безопасности при эксплуатации электрооборудования

Для обеспечения безопасности при работе с электрическими устройствами необходимо соблюдать следующие правила:

  1. Следить за исправностью изоляции проводов и электроприборов, не использовать поврежденное оборудование.
  2. Не касаться одновременно находящихся под напряжением металлических частей и заземленных конструкций.
  3. Отключать электроприборы от сети после окончания работы, не оставлять их под напряжением без присмотра.
  4. Не перегружать электрические сети сверх допустимых нагрузок для предотвращения перегрева проводов.
  5. Не производить самостоятельный ремонт электрооборудования, если вы не обладаете необходимой квалификацией и допуском.
  6. Работать в диэлектрических перчатках и обуви, применять изолированный инструмент.
  7. Следить за наличием и исправностью защитных средств — заземления, автоматических выключателей и т.д.
  8. Проходить регулярный инструктаж и обучение правилам безопасности при работе с электричеством.

Неукоснительное соблюдение правил безопасности и применение защитных средств позволяет избежать несчастных случаев и травм при эксплуатации любого электрического оборудования.

Самолет

С незапамятных времен люди пытались подняться в небо и создать такой аппарат, который бы помог человеку взлететь. В 1903-м году американские изобретатели братья Орвилл и Уилбур Райт сделали это — они успешно запустили в воздух свой самолет с двигателем «Флайер – 1». И хотя он продержался над землей всего лишь несколько секунд, это значимое событие считается началом эпохи зарождения авиации. А братья-изобретатели считаются первыми пилотами в истории человечества.

В 1905-м году братья сконструировали третий вариант аппарата, который уже находился в воздухе почти полчаса. В 1907-м году изобретатели подписали контракт с американской армией, а позже и с французской. Тогда же пришла идея перевозить на самолете пассажиров, и Орвилл и Уилбур Райт усовершенствовали свою модель, оборудовав ее дополнительным сиденьем. Также ученые оснастили самолет более мощным двигателем.

Этапы создания теории

XVII-XVIII века ознаменовались созданием основ мировой науки. Начиная с XVII века происходит ряд открытий, которые в будущем позволят человеку полностью изменить свою жизнь.

Появление термина

Английский физик и придворный врач Уильям Гильберт в 1600 году издал книгу «О магните и магнитных телах», в которой он давал определение «электрический». Оно объясняло свойства многих твердых тел после натирания притягивать небольшие предметы. Рассматривая это событие надо понимать, что речь идет не об изобретении электричества, а лишь о научном определении.

Уильям Гильберт смог изобрести прибор, который назвал версор. Можно сказать, что он напоминал современный электроскоп, функцией которого является определение наличия электрического заряда. При помощи версора было установлено, что, кроме янтаря, способностью притягивать легкие предметы также обладают:

  • стекло;
  • алмаз;
  • сапфир;
  • аметист;
  • опал;
  • сланцы;
  • карборунд.

Первая электростатическая машина

В 1663 году немецкий инженер, физик и философ Отто фон Герике изобрел аппарат, являвшийся прообразом электростатического генератора. Он представлял собой шар из серы, насаженный на металлический стержень, который вращался и натирался вручную. С помощью этого изобретения можно было увидеть в действии свойство предметов не только притягиваться, но и отталкиваться.

В марте 1672 года известный немецкий ученый Готфрид Вильгельм Лейбниц в письме к Герике упоминал, что при работе с его машиной он зафиксировал электрическую искру. Это стало первым свидетельством загадочного на тот момент явления. Герике создал прибор, послуживший прототипом всех будущих электрических открытий.

В 1729 году ученый из Великобритании Стивен Грей произвел опыты, которые позволили открыть возможность передачи электрического заряда на небольшие (до 800 футов) расстояния. А также он установил, что электричество не передается по земле. В дальнейшем это дало возможность классифицировать все вещества на изоляторы и проводники.

Два вида зарядов

Французский ученый и физик Шарль Франсуа Дюфе в 1733 году открыл два разнородных электрических заряда:

  • «стеклянный», который теперь именуется положительным;
  • «смоляной», называющийся отрицательным.

Затем он произвел исследования электрических взаимодействий, которыми было доказано, что разноименно наэлектризованные тела будут притягиваться один к одному, а одноименно — отталкиваться. В этих экспериментах французский изобретатель пользовался электрометром, который позволял измерять величину заряда.

Лейденская банка

В 1745 году физик из Голландии Питер ван Мушенбрук изобрел Лейденскую банку, которая стала первым электрическим конденсатором. Его создателем также является немецкий юрист и физик Эвальд Юрген фон Клейст. Оба ученых действовали параллельно и независимо друг от друга. Это открытие дает ученым полное право войти в список тех, кто создал электричество.

11 октября 1745 года Клейст произвел опыт с «медицинской банкой» и обнаружил способность хранения большого количества электрических зарядов. Затем он проинформировал об открытии немецких ученых, после чего в Лейденском университете был проведен анализ этого изобретения. Затем Питер ван Мушенбрук опубликовал свой труд, благодаря которому стала известна Лейденская банка.

Бенджамин Франклин

В 1747 году американский политический деятель, изобретатель и писатель Бенджамин Франклин опубликовал свое сочинение «Опыты и наблюдения с электричеством». В ней он представил первую теорию электричества, в которой обозначил его как нематериальную жидкость или флюид.

В современном мире фамилия Франклин часто ассоциируется со стодолларовой купюрой, но не следует забывать о том, что он являлся одним из величайших изобретателей своего времени. В списке его многочисленных достижений присутствуют:

  1. Известное сегодня обозначение электрических состояний (-) и (+).
  2. Франклин доказал электрическую природу молнии.
  3. Он смог придумать и представить в 1752 году проект громоотвода.
  4. Ему принадлежит идея электрического двигателя. Воплощением этой идеи стала демонстрация колеса, вращающегося под действием электростатических сил.

Публикация своей теории и многочисленные изобретения дают Франклину полное право считаться одним из тех, кто придумал электричество.

Механизм электромагнитной индукции разгадан

Механизм электромагнитной индукции был разгадан благодаря труду знаменитого ученого Майкла Фарадея. Он проводил серию экспериментов и открыл закон электромагнитной индукции, который сейчас известен как закон Фарадея:

Процесс электромагнитной индукции заключается в том, что при изменении магнитного поля возникает электрическое поле, что приводит к появлению электрического тока в проводнике. Таким образом, механизм электромагнитной индукции объясняет взаимосвязь между электричеством и магнетизмом.

Открытие Фарадея легло в основу работы современных генераторов, трансформаторов и других устройств, которые используют электромагнитную индукцию для преобразования энергии. Благодаря этому мы можем получать электричество из различных источников и использовать его в нашей повседневной жизни.

Таким образом, открытие электромагнитной индукции открыло перед человечеством новое великое направление, которое не только изменило нашу жизнь, но и открыло новые горизонты для развития техники и науки.

Закон электромагнитной индукции — главное открытие

Открытие электромагнитной индукции представляет собой одну из ключевых исторических моментов в физике, которое сформировало основы современной электричества и магнетизма. Великий физик Майкл Фарадей положил основу для понимания закона, который известен как закон электромагнитной индукции.

Закон электромагнитной индукции гласит, что изменение магнитного поля в проводниковом контуре создает электрическую силу, явление названо электромагнитной индукцией. Это открытие имело глубокое значение и стало основой для развития электротехники и электроники, а также понимания законов электромагнетизма.

Майкл Фарадей провел многочисленные эксперименты и исследования, чтобы доказать этот закон. Он обнаружил, что электрическая сила, возникающая в проводнике при изменении магнитного поля, пропорциональна скорости изменения магнитного потока через проводниковую петлю, а также обратно пропорциональна количеству витков провода в петле.

Этот закон Фарадея оказал огромное влияние на науку и технику. Он стал основой для создания генераторов переменного тока, трансформаторов, электромагнитов и множества других устройств.

Закон электромагнитной индукции стал неотъемлемой частью теории электромагнетизма и был широко применен в различных областях научных исследований и техники. Он стал основой для понимания принципов, лежащих в основе работы многих электронных устройств, включая компьютеры, телефоны и многое другое.

Электрическое поле в эфире

Физики пока не в состоянии сказать, что такое электрическое поле. Собрали массу знаний, даже составили описательные формулы, выражения, но сути не представляют. Одновременно высмеивают понятие эфира, а значит, Алессандро Вольту, давшего имя, используемое теперь для обозначения единицы электрического напряжения. Итак, по нынешним меркам:

Читатели уже догадались, что правило выписано из советского учебника (времён СССР), логично поинтересоваться мнением «идеалистов» на Западе (в противовес материалистам)

Википедия на русском даёт уже более осторожное определение, трактуя электрическое поле как часть электромагнитного. Не углубляясь в суть

Как следовало ожидать, на Западе говорят, что электрическое поле – нечто, неподвластное органам чувств, что определяется через единичный тестовый заряд путём опыта. Определение векторного поля тоже мало сообщает об истинной природе вещей. Приходится признать, что человечество пока не понимает поля и причину их взаимодействия указанным образом.

Решили один вид статических зарядов обозначить положительным, второй отрицательным. Существование двух видов признавал ещё Бенджамин Франклин в XVIII веке. Линии электрического поля начинаются и заканчиваются исключительно на зарядах. Это ключевой постулат, объясняющий работу конденсаторов, экранов и прочих приспособлений. Поле принято обозначать силовыми линиями, исходящими из положительных зарядов и входящими в отрицательные. Не все задумываются над причинами происходящего.

Линии направлены по указанному, пробный (тестовый) заряд (см. определение выше) тоже положительный. Вектор направлен по ходу движения. Общеизвестно, что заряды одинакового знака отталкиваются, если пробный положительной полярности, он стремится удалиться. В ту сторону изображают и линии напряжённости электрического поля. Соответственно, пробный заряд притягивается отрицательным.

Сегодня направление тока перепутано с истинным движением электронов по той причине, что физики избрали пробным зарядом положительный. Бытует мнение, что Бенджамин Франклин ввёл в заблуждение целый Земной шар. Он считал, что стекло обладает избытком электрической жидкости (флюида), назвав заряд стеклянным. Соответственно, смоляное электричество – отрицательное (избыток электронов). Читатели уже догадались, что в момент выбора требовалось сделать наоборот.

Кто изобрел электричество

Изобретение электричества в 19 веке стало возможным благодаря открытиям целой плеяды великих ученых. В 1752 году Бен Франклин провел свой эксперимент с воздушным змеем, ключом и штормом. Это просто доказало, что молния и крошечные электрические искры — это одно и то же.

Эксперимент Бена Франклина

Итальянский физик Алессандро Вольта обнаружил, что определенные химические реакции могут производить электричество, а в 1800 году он создал гальванический элемент, раннюю электрическую батарею, вырабатывающую постоянный электроток. Он также выполнил первую передачу тока на расстояние, связав положительно и отрицательно заряженные разъемы и создав между ними напряжение. Поэтому многие историки считают, что 1800 — это год изобретения электричества.

Вам это будет интересно Оказание первой помощи при поражении электрическим током

В 1831 году электричество стало возможно использовать в технике, когда Майкл Фарадей создал электродинамо, решившее на практике проблему генерирования постоянного электротока. Довольно простое изобретение с использованием магнита, перемещавшегося внутри катушки из медного провода, создавал небольшой ток, протекающий через провод. Оно помогло американцу Томасу Эдисону и британскому ученому Джозефу Свону, каждому в отдельности, примерно в одно время в 1878 году изобрести лампу накаливания. Сами лампочки для освещения были изобретены другими исследователями, но лампа накаливания была первым практичным устройством, дававшем свет в течение нескольких часов подряд.

Русский ученый и инженер А. Н. Лодыгин

В 1800-х и в начале 1900-х годов, сербско-американский инженер, изобретатель и мастер электротехники Никола Тесла стал одним из авторов зарождения коммерческого электричества. Он работал совместно с Эдисоном, сделал много революционных разработок в области электромагнетизма и хорошо известен своей работой с двигателями переменного тока и многофазной системой распределения энергии.

Обратите внимание! Русский ученый и инженер А. Н

Лодыгин изобрел и запатентовал в 1874 г. лампу освещения, где функцию нити накаливания выполнял угольный стержень, размещенный в вакуумной среде сосуда, изготовленного из стекла. Это были первые лампочки освещения в России. Только через 16 лет в 1890-х гг. он применил нить из тугоплавкого металла — вольфрама.

Однозначно нельзя заявить в каком году появился свет. Несмотря на то, что многие историки считают что лампочка была изобретена американцем Эдисоном, тем не менее первая лампа с платиновой нитью накаливания в вакуумном стеклянном сосуде была изобретена в 1840 изобретателем из Англии Де ла Рю.

Дополнительная информация. Российскому ученому П. Н. Яблочкову россияне были благодарны за возникновение электродуговой лампы и хотя ресурс ее работы не превышал 4 часов, осветительный прибор широко использовался на территории Зимнего дворца почти 5 лет.

Электродуговая лампа П.Н.Яблочкова

Николас Джозеф Каллан изобрел индукционную катушку

Ученые занимавшиеся изучением электричества подхватили идею ирландского священника Николас Джозеф Каллан (1799-1864) по изменению взаимно связанной индукции.

После посвящения в сан Каллан изучал физику в Римском университете, который окончил в 1826 году. По возвращении в Ирландию он был назначен профессором естественной философии (которую мы теперь называем физикой) в Колледже Святого Патрика в Мейнуте, недалеко от Дублина, где он основал свою лабораторию.
В 1836 году Каллан построил первое устройство, способное эффективно эксплуатировать взаимную связь электричества. Его устройство состояло из двух катушек: с малым числом витков и большим из хорошо изолированных проводов, намотанных на железный сердечник. Резкое прекращение тока первой катушки вызывало высокое напряжение во второй (возможно, до нескольких десятков киловольт).

В 1854-1855 годах Каллан разработал электрохимические ячейки, которые собрал в большие батареи для питания электромагнитов.
Каллан также построил ранние электрические двигатели и в 1853 году запатентовал гальванический процесс, направленный на предотвращение окисления железа. Тем не менее он не пренебрегал своим религиозным призванием, написав около 20 книг на подобные темы. Каллан построил свое устройство, потому что ему нужны были высокие напряжения в его экспериментах, трансформируя их из низкого напряжения, обеспечиваемого его батареями, но он не смог внедрить изобретения в широкую эксплуатацию.

Люсьен Голар и Джон Диксон Гиббс — изобретатели трансформатора

Идея применения связанных катушек в системах переменного тока была впервые задумана Яблочковым, изобретателем свечи, но она прошла незамеченной. Вместо этого устройство со связанными катушками впервые реализовано в Лондоне в 1881 году французским химиком Люсьеном Голаром (1850-1888) и британцем Джоном Диксоном Гиббсом (1834-1912).

Их устройство, полученное из катушки Румкорфа и получившее название вторичного генератора, имело соотношение витков 1:1 и открытый железный сердечник. Несколько таких устройств питались на своих первичных устройствах, соединенных последовательно, в то время как их вторичные устройства питали независимых пользователей при низком напряжении. Они запатентовали и продемонстрировали устройство в Лондоне в 1882 году на Туринской Международной выставке 1884 года на линии переменного тока, протянувшейся на рекордное расстояние в 34 км.

Электричество у нас дома

Напряжение в электросети в одних странах составляет 240 В, в других 110 В. Это высокое напряжение, и удар током может быть смертельным. Параллельные цепи подводят электричество в различные части дома. Все электронные приборы снабжены предохранителями. Внутри них находятся очень тонкие проволочки, которые плавятся и разрывают цепь, если сила тока чересчур велика. Каждая параллельная цепь обычно имеет три провода: под напряжением и заземляющий. По первым двум идет ток, а заземляющий провод нужен для безопасности. Он отведет электрический ток в землю в случае пробоя изоляции. Когда вилку включают в розетку, разъёмы соединяются с проводом под напряжением и нейтральным проводом, замыкая цепь. В некоторых странах используют вилки с двумя разъёмами, без заземления (см. рис.).

Трудно найти человека, который не был бы знаком с электричеством. А вот найти того, кто знает историю его открытия, гораздо сложнее. Кто открыл электричество? Что представляет собой это явление?

Заключение

Конечно, нельзя с уверенностью сказать, кто открыл электричество на самом деле. Явление это существует в природе, и вполне возможно, что открыли его ещё до Фалеса. Однако многие ученые, такие как Уильям Гилберт, Отто фон Герике, Вольта и Гальвани, Ом, Ампер, определенно внесли свой вклад в нашу сегодняшнюю жизнь.

В повседневной жизни приборы, работающие на электроэнергии, стали для нас привычным и вполне обыденным явлением. Многие даже не задумывались о том, кто придумал электричество. Ведь, если бы оно не было изобретено, сложно и представить, как бы мы сейчас жили.

На самом деле это открытие к своему современному проявлению шло не одно столетие, и на всем длинном пути многие умы приложили свой вклад в развитие этой сферы.

Понравилась статья? Поделиться с друзьями:
Журнал «Наш дворик»
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: