Введение в технологию DWDM
С термином «DWDM» сегодня связан обширный круг технологий, решений и стандартов в области связи и передачи данных. Постоянно появляющиеся типы сервисов и новые пользовательские приложения создают все большую нагрузку на магистральную транспортную сеть. Это значит, что для транспортировки высокоскоростного трафика требуется технология передачи данных, которая, с одной стороны, обладает достаточной производительностью, с другой предоставляет оператору возможности масштабирования сети без изменения инфраструктуры. Этим требованиям удовлетворяет технология спектрального мультиплексирования (WDM –Wavelength Division Multiplexing), которая уже почти 30 лет является основной технологией построения магистральных волоконно-оптических сетей связи.
Слайд 13Голографическая памятьПредставлять информацию оптический компьютер может с помощью изображений –
принимать их из объектива, хранить на кассете со слайдами.
Особый интерес
представляют голографические устройства памяти. Такая память обладает рядом достоинств
Голограмма сохраняет информацию не только об интенсивности, но и о фазе световой волны, что в оптике принципиально важно, а с утилитарной точки зрения — позволяет повысить объем записываемой информации
Афанасьев Сергей А-13-08 Оптические компьютеры и устройства ЭВМ, использующие оптические элементы
Кроме того, голограмма сама может использоваться в качестве принципиального узла оптического процессора, выступая одновременно в роли буферной памяти и обрабатывающего элемента.
Информация в таких голограммах записывается путем изменения показателя преломления по всему объему носителя. Обычно для этого используются прозрачные материалы с ярко выраженными нелинейными оптическими характеристиками, например, кристаллы ниобата лития
Выбор длинны волны
При проведении фотометрического измерения источник света как правило генерирует световой поток по всему видимому (и не только) спектру длин волн. Источники света современных биохимических анализаторов как правило охватывают диапазон от ближнего ультрафиолета и до всего видимого красного диапазона.
Как уже говорилось ранее молярный коэффициент поглощения является функцией от длинны волны и следовательно исследуемый раствор будет обладать разными коэффициентами поглощения на разных длинах волн. При этом на практике, в основном для того, чтобы избежать влияния неспецифических факторов, измерения проводится на какой-то одной определенной длине волны.
Для выбора длины волны на заре лабораторной диагностики существовало такое наивное эмпирическое правило: если мы видим, что раствор окрашен в какой-либо цвет, то нужно выбрать для измерения длину волны по цвету, отличающуюся от цвета раствора.
Помимо того, что данный подход слишком упрощен, он еще и не применим к ультрафиолетовой части спектра.
Более научный подход заключается в построении графика зависимости оптической плотности раствора от длинны волны.
Поскольку измеряемые биохимическими методами биологические вещества, как правило не обладают достаточной собственной оптической плотностью, для их детекции используются различные специфические химические реакции, которые в итоге и генерируют вещества обладающие достаточной оптической плотностью, в этом случае говорят, что реакция идет с увеличением оптической плотности. Либо в процессе реакции такие вещества расходуются, тогда реакция идет с уменьшением оптической плотности.
Для выбора длинны волны для конкретного метода проводится построение двух графиков зависимости оптической плотности раствора от длинны волны:
- для субстрата (субстратов) химической реакции
- и для продуктов (продукта) химической реакции
После построения графика берется длинна волны, на которой разность оптической плотности у субстратов и продуктов реакции максимальна.
Для примера можно взять так называемый оптический тест Варбурга.
Данная реакция заключается в обратимом окислении никотинамидадениндинуклеотида (НАД) под действием какого-нибудь фермента из класса оксидоредуктаз.
В результате мы имеем два графика для окисленной и восстановленной формы НАД одна из которых играет роль субстрата, а другая продукта реакции в конкретных биохимических наборах.
Оптический тест Варбурга
В результате анализа данного графика видим, что наибольшая разница оптической плотности между этими двумя формами находится в районе 340 нм. Именно эта длинна волны и используется для определения перечисленных выше биохимических показателей.
Устройство, которое преобразует свет от источника в световой поток с какой-то одной определенной длинной волны называется монохроматор.
Основные типы монохроматоров:
- Абсорбционный светофильтр — самый первый монохроматор, по большому счету представляющий из себя просто цветное стеклышко
- Дифракционный светофильтр
- Призма
- Дифракционная решетка — в настоящее время у большинства лучших биохимических анализаторов монохроматор представляет из себя голографическую дифракционную решетку
Таким образом, если включить в нашу схему простейшего фотометра монохроматор (например призму), то она будет выглядеть следующим образом.
Фотометрия на определенной длинне волны
Слайд 6Когда световое излучение действует на вещество, состоящее из дискретных зарядов, они
вынужденно колеблются с частотой действующего электрического поля. Таким образом, в данном случае, резонанс наблюдается вокруг естественных частот, посредством чего энергия передается от действующего поля системе, и амплитуда вибрации значительно увеличивается. Атомы или молекулы будут обычно терять свою энергию, сталкиваясь друг с другом, таким образом увеличивая кинетическую энергию других частиц, вовлеченных в столкновения. Следовательно, энергия, связанная с действующим полем, рассеивается на нагрев среды. Этот процесс называется поглощением.
ПОГЛОЩЕНИЕ СВЕТА
Основные компоненты DWDM-системы
Транспондеры/мукспондеры
Адаптация клиентских сигналов к сетям DWDM может быть проведена с помощью блоков транспондеров и мукспондеров (агрегирующих транспондеров). Эти блоки применяются для преобразования несущей длины волны сигнала, поступающего от клиентского оборудования, к установленному частотному плану WDM, оптического сигнала, приходящего из линии, – к несущей длине волны клиентского оборудования, то есть совмещают в себе как передающую, так и приемную часть.
Рассмотрим более подробно функционал транспондеров и мукспондеров в общем виде, а далее поясним разницу между ними. Оба устройства осуществляют передачу линейного сигнала на нужной длине волны в рамках выбранного формата спектрального уплотнения. Компоненты в составе передающей части (лазеры и модуляторы), а также алгоритмы упреждающей коррекции ошибок (FEC – Forward Error Correction) обеспечивают достаточную его устойчивость к шумам и искажениям. Использование в блоках транспондеров/ мукспондеров современных форматов модуляции позволяет обеспечивать высокую пропускную способность сети. С другой стороны, приемо-передающие модули обеспечивают прозрачное преобразование различных клиентских интерфейсов в линейный с возможностями мониторинга и контроля ошибок.
Расширяют функционал транспондеров и мукспондеров за счет поддержки решений операторского класса: принимаются меры по увеличению надежности, времени непрерывной работы, снижению времени перезапуска; обеспечивается удаленный мониторинг. Современные модули могут поддерживать программно-управляемую архитектуру сети SDN (Software Defined Network). Транспондер имеет число выходных портов, равное числу клиентских. В зависимости от реализации, он может обладать функцией внутренней коммутации или жестко связывать входные и выходные порты друг с другом попарно.
Слайд 25В крови здоровых мужчин содержится от 13 до 16% гемоглобина (145
г/л). В крови здоровых женщин содержится в среднем от 12 до 14% гемоглобина (130 г/л). Гемоглобин синтезируется клетками костного мозга. При разрушении эритроцитов, после отщепления гема гемоглобин превращается в желчный пигмент биллирубин, который с желчью поступает в кишечник и после превращений выводится с калом.В норме гемоглобин содержится в виде 2-х физиологических соединений. Гемоглобин, присоединивший кислород, превращается в оксигемоглобин — НbО2. Оксигемоглобин, отдавший кислород, называют восстановленным (деоксигемоглобином) — Нb. Удельные спектры поглощения окси- и деоксигемоглобина, показанные на слайде, значительно отличаются, особенно в красной области видимого и инфракрасного света.
ГЕМОГЛОБИН
Виды оптических систем[]
Оптические системы разделяются на натуральные (биологические) и оптические системы, созданные человеком .
Оптические натуральные (биологические) системы
Глаз, Оптические элементы:1- деформируемый хрусталик, 2-управляемая диафрагма глаза, 3-сетчатка глаза, 4-изображение в глазу
К Оптическим натуральным (биологическим) системам относятся ОС , существующие в природое.
К оптическим биологическим системам относятся, например, глаза.
Переход от большего к меньшему
Основная статья: Нанотехнология
Т.е. идти по вектору сверху-вниз. Когда стремишься создать меньшие устройства при использовании больших, чтобы их использовать в нужных решениях.
Много технологий начиная от обычных методов применения, например, кремния как твердого тела в настоящее время при изготовлении микропроцессоров теперь способны выполнять функции, присущие элементам меньших чем 100нанометров, благодаря новым нанотехнологиям. Гигантские накопители на жестких дисках на основе магнитосопротивления уже заменяются мологабиритными устройствами и при изготовлении и работе используются нанотехнологии от большего к меньшему с использованием метода смещение атомного слоя (ALD). Питер Грзаджк 0кснберг и Альберт Ферт получили Нобелевскую премию по Физике за открытия Гигантского магнитосопротивления и вкладов в область спинтронники в 2007 году.
Методы твердого тела могут также использоваться при создании устройств, известные как nanoelectromechanical системы или NEMS, которые связаны с микроэлектромеханическими системами или MEMS.
Субмикронная литография
Разрешение современных атомных силовых микроскопов позволяют внести химикат на поверхность в желательном образце в процессе, названном Субмикронная литография Ручки падения (ТВЕРДОСТЬ ПО ВИККЕРСУ)(т.е. техника литографии исследования просмотра, где используется атомный наконечник микроскопа силы, чтобы передать молекулы поверхности через растворитель мениск. Эта техника позволяет копирование поверхности с размерами в до 100 нм). Это сочетается с нарастаюшим большим внедрением субмикронной литографии. Например, сосредоточенные лучи иона могут непосредственно удалить материал, или внести материал, когда подходящий предшественник газ применен одновременно. Например, эта техника используется для создания 100 разновидностей нитрометана — материала для анализа в микроскопии взаимодейстаия электрона.
Нанооптика
Наносреда из электромагнитно-двойных пар золотых точек
В наносозданной среде получен эффект взамодействия электромагнитных волн с сильным магнитным ответом в зоне видимого спектра электромагнитных волн («видимых-легких частот»), включая полосу с отрицательным магнетизмом. Среда сделана из электромагнитночувствительных двойных пар золотых точек с геометрией и симметрией, тщательно разработанной на нанометрическом уровне. Возникающий магнитный ответ получен в зоне частот 600-700 ТГц (1012Гц), в диапазоне зелёный — часть фиолетового цветов получается благодаря возбуждению антисимметричного плазменного резонанса. Высокочастотная проходимость проявляет себя качественно с новым эффектом оптического взаимодействия в данных условиях применения нанотехнологий. Это впервые показывает возможность применения электромагнетизма в зоне видимых частот и прокладывает путь в видимой оптике для получения оптических систем с лучшими показателями преломления, прозрачности к определённым лучам света.
Оптические достижения (разработки)
К Оптическим достижениям (разработкам) относятся все открытия, изобретения, технологии (нанотехнология), используемые на практике — это оптическое оборудование, оптические приборы, измерительная оптическая аппаратура, микроскопы, Медицинское оборудование, фототехника, оптические материалы, Медикобиологические оптические разработкии, Оптические биоинженерные технологии и т. д.
К ОС также относится элементная база. Элементы оптических приборов называют оптическими деталями.
Оптические приборы (микроскопы,ультрамикроскопы и т. д.) предназначены для управления спектром видимых электромагнитных волн, световых лучей (фотонов) с целью полученмия нужного изображения для его рассмотрения или для анализа одного из множеств характерных свойств волны.
Оптическое волокно в будущем
Так как требования к качеству связи возрастают с каждым годом, ее производительность должна быть на должном уровне. Первым в очереди стоит развертывание беспроводной сети 5G.
Так какой объем доступных данных можно передавать по оптическому волокну? 40% планируется выделить только на подключение к оптическим компьютерам. Остальные 60% будут потребляться пользователями смартфонов, планшетных компьютеров и другими портативными устройствами. Это примерная распланировка предстоящего подключения 5G.
Оптоволоконные кабели способны передавать информацию до 100 Гбит/с при использовании фотонной технологии.
Применение технологий
Для выполнения всех необходимых процессов лазерные принтеры, сканеры, компакт-диски используют свет. Оптические технологии способны обеспечить высокоскоростное подключение к сетям, аналоговые устройства отстают, причем заметно.
Различные операции с лазерами применяются для того, чтобы увеличить срок службы оборудования, улучшая его прочность, пластичность и поверхность. Широко применяется данная технология в аппаратах, которые считывают штрих-коды.
Световые технологии применимы и в области медицины. Например, в приборах освещения внутренней полости человека. Также волоконная оптика применяется при скоростной съемке фильмов.
Микрочипы на основе оптики
Связь с помощью света является одной из основных альтернатив техники будущего. Электрические провода обладают одним существенным минусом — ограничение скорости передачи данных. К тому же на это нужно немалое количество энергии, что влечет за собой перегрев.
Замена обыкновенного провода оптическим приведет к тому, что данные будут передаваться быстрее. А также они будут использовать параллельную передачу разными цветами.
Впервые ощутимый прогресс в сторону оптических технологий, был продемонстрирован в 2015 году, когда исследователи описали решение, которое приведет к преодолению ограничений полупроводников. В статье журнала Nature исследователи подробно описали принцип работы микропроцессора, предоставив фотографии и дав ему название «Смена нуля».
Тем самым, применяя кремниевую основу в микросхемах, можно использовать фотонику. Самый распространенный пример применения фотоники — это беспроводное интернет-соединение 4G.
Именно микрочипы оптического происхождения обеспечивают такую высокую скорость передачи данных.
Что такое абсорбция?
Поглощение — это мера способности вещества поглощать свет определенной длины волны. В частности, он равен логарифму обратной величины коэффициента пропускания. В отличие от оптической плотности, поглощение измеряет количество света, поглощаемого веществом.
Кроме того, спектроскопия измеряет оптическую плотность (используя колориметры или спектрофотометр). Поглощение — это безразмерное свойство, в отличие от большинства других физических свойств. Есть два способа объяснить поглощение: как свет, поглощаемый образцом, или как свет, проходящий через образец. Уравнение для расчета оптической плотности выглядит следующим образом:
В то время как A — это поглощение, I — излучение, прошедшее от образца, I — падающее излучение. Это следующее уравнение также аналогично приведенному выше уравнению с точки зрения коэффициента пропускания (T).
Близкие понятия[]
Следует различать понятия оптические системы, оптические схемы и оптические приборы (оборудование, принадлежности и др. устройства).
- Оптические схемы — это графическое представление процесса изменения света в оптических системах. Кроме оптических подсистем на оптических схемах показывают излучатели и некоторые другие вспомогательные элементы.
- Приборы называют оптическими, если хотя бы одна их основная функция выполняется оптической системой. Таким образом, наличие в приборах оптических систем служат необходимым, но не достаточным признаком оптического прибора. Например, добавление к логарифмической линейке лупы, облегчающей отсчет, не делает линейку оптическим прибором. ОС являются обязательной и необходимой частью оптических приборов, несмотря на то, что стоимость их изготовления может быть сравнительно малой. Основные функции некоторых приборов выполняются не только оптическими, но и другими системами: механической — нивелир, теодолит, электронной — телекамера.
Назначение и устройство оптических приборов обуславливают многообразные функции их оптических систем. Типичная функция оптических систем (и/или их подсистем) — формирование оптических изображений. Они выступают в качестве преобразователей одних световых пучков в другие. Оптические системы, предназначенные для создания требуемых изображений, называются иконическими.
Что такое оптическая плотность?
Оптическая плотность (OD) — это степень, в которой преломляющая среда задерживает проходящие лучи света. Другими словами, оптическая плотность — это термин, который описывает распространение световой волны через вещество. Оптическая плотность определяется как логарифмическое соотношение между излучением, падающим на вещество, и излучением, прошедшим через вещество. Следовательно, оптическая плотность влияет на скорость света, проходящего через вещество. Основным фактором, влияющим на оптическую плотность, является длина световой волны.
Важно отметить, что оптическая плотность не имеет отношения к физической плотности вещества. Оптическая плотность выражает тенденцию атомов или молекул вещества сохранять поглощенную энергию
Это удержание происходит за счет электронных колебаний. Следовательно, если оптическая плотность вещества высока, скорость света через это вещество мала (поскольку световые волны движутся медленно). Кроме того, оптическую плотность можно измерить с помощью спектрометра.
В показатель преломления материала указывает на оптическую плотность этого вещества. Если быть более конкретным, соотношение между скоростью света в вакууме и скоростью света, проходящего через вещество, дает показатель преломления. Другими словами, это объясняет, насколько медленна скорость света в веществе по сравнению со скоростью света в вакууме.
Преграда в ограничениях
К 2020 году человечеству будет доступна скорость передачи данных до 1000 Тбит/с. Это делается для того чтобы полностью отвечать требованиям широкой полосы. Но данная задача существенно затормаживается, так как на сегодняшний день не существует технологий, способных преодолеть преграду. Более остро стоит вопрос о возможности передачи информации на дальние расстояния.
На такое способен лишь кабель с оптическим волокном в одну жилу, у которого скорость достигает почти 10 Тбит/с. Но он способен передать только один поток фотонного сигнала.
Многомодовые кабели, которые обеспечивают прохождение в параллели нескольких световых сигналов, способны работать без искажений только на ограниченном расстоянии в несколько метров.
В гонке по оптимизации многожильного кабеля японские инженеры побили все рекорды по скорости, достигнув предела в 43 Тбит/с. В этом кабеле функционировал всего один лазер.
Затухание (поглощение)
Определение 1
Поглощением света называют потери энергии волны при прохождении ее сквозь вещество, в результате преобразования ее энергии в другие формы (внутреннюю энергию, вторичное излучение). Результатом поглощения света является уменьшение интенсивности света.
Поглощение в классической теории дисперсии учитывают, рассматривая некоторую диссипативную силу. Эта сила очень мало искажает собственные колебания электрона за один период, значит, ее можно положить пропорциональной скорости движения электрона ($\frac{dr}{dt}$). Так, сила сопротивления, действующая на электрон имеет вид:
где $g$ коэффициент, зависящий от природы среды. Соответственно, амплитуда колебаний убывает по закону:
Получи помощь с рефератом от ИИ-шки
ИИ ответит за 2 минуты
Если колебания затухают слабо, то есть справедливы выражения:
мы имеем, что:
такое затухание, вызванное излучением, называют естественным затуханием. При этом время естественного затухания по энергии ${\tau }_{izl}$, за которое энергия убывает в $e$ раз, будет равно:
Разница между оптической плотностью и поглощением
Разница между оптической плотностью и поглощением — Наука
Ключевое различие между оптической плотностью и поглощением заключается в том, что При измерении оптической плотности учитываются как поглощение, так и рассеяние света, тогда как при измерении оптической плотности учитывается только поглощение света.
И оптическая плотность, и оптическая плотность — взаимосвязанные термины. Оптическая плотность (OD) — это степень, в которой преломляющая среда задерживает проходящие лучи света, в то время как поглощение — это мера способности вещества поглощать свет определенной длины волны.
1. Обзор и основные отличия 2.Что такое оптическая плотность 3. Что такое абсорбция 4. Сходство между оптической плотностью и поглощением. 5. Параллельное сравнение — оптическая плотность и поглощение в табличной форме 6. Резюме
Слайд 15Измерения должны осуществляться в монохроматическом свете наиболее поглощаемого содержащимся в растворе
конкретным исследуемым веществом участка спектра 315 нм — 980 нм. Другие компоненты раствора должны поглощать этот свет относительно слабо. Для этого фотоколориметр может быть снабжен набором соответствующих светофильтров. Принцип действия колориметра основан на серии измерений светового потока Ф0 проходящего через растворитель или контрольный раствор, и потока Ф1, проходящего через исследуемый раствор. В колориметре световые потоки Ф0 и Ф1 преобразуются в электрические сигналы U0 и U1, регистрируемые гальванометром как коэффициент передачи (τ), оптическая плотность (D) или концентрация.
КОНЦЕНТРАЦИОННАЯ КОЛОМЕТРИЯ
Причины возникновения ошибок в системах DWDM при приеме оптического сигнала
Прежде чем рассматривать методы увеличения производительности DWDMсистемы и модернизации оптических транспортных сетей в целом, рассмотрим несколько причин возникновения ошибок на приеме. Шумы приемника (или систематические ошибки при его перегрузке) возникают при неоптимальном уровне оптической мощности на входе транспондера.
Хроматическая дисперсия, уширяя оптические импульсы, уменьшает экстинкцию и затрудняет их прием. Шумы усиленного спонтанного излучения ASE (Amplified Spontaneous Emission) накапливаются при прохождении групповым сигналом цепочки оптических усилителей.
В линиях, не содержащих оптических усилителей, как правило, основными причинами ошибок являются дисперсия, шумы и перегрузка на приеме. Внедрение оптических усилителей сводит указанные проблемы из фундаментальных в инженерные: перед подачей сигнала на приемник его усиливают до оптимального уровня (вдали от границ чувствительности и перегрузки). Для компенсации дисперсии линия оборудуется специальными устройствами – компенсаторами, восстанавливающими длительность импульсов перед подачей сигнала на вход приемной части транспондера.
Платой за преодоление первых двух причин возникновения ошибок является внесение шума ASE и нелинейных искажений. Последнее обусловлено иным характером работы линии. Теперь в пределах регенерационной секции существуют несколько (иногда – несколько десятков) усилительных секций, причем в начале каждой из них, где интенсивность оптического сигнала достаточно велика, сигнал подвергается действию нелинейных эффектов.
Обусловленное экономическими причинами желание более эффективно использовать спектр усилителя и минимизировать число усилителей в линии приводит к появлению спектра плотно расположенных каналов большой мощности, что и приводит к развитию внутриканальных и межканальных нелинейных эффектов.
Транспондеры и мукспондеры, проектируемые для работы в сетях, не содержащих оптических усилителей (как правило, CWDM), оптимизируют, улучшая чувствительность и устойчивость к дисперсии. Для DWDMрешений это неактуально – там требуется каналообразующее оборудование, устойчивое к влиянию шума ASE и нелинейным искажениям сигнала. Можно определить граничные допустимые значения параметров, описывающих входной оптический сигнал, как значения, дающие на выходе требуемый коэффициент ошибок при оптимальных остальных параметрах.
Количество ошибок в битовом потоке данных характеризуют величиной BER (Bit Error Rate), равной отношению ошибочно переданных бит к общему количеству переданных бит. Заказчик системы связи оговаривает максимально допустимое значение BER, которое обычно находится на уровне 10 -10…-12.
Принцип работы
Создать оптические компьютеры не составит особых трудностей. Они настанут во время тестирования, так как нужно еще заставить работать оптические волокна.
Создание оптических компьютеров в корне меняет саму концепцию программирования, которая основана на последовательности нулей и единиц. С другой стороны, процесс передачи данных будет быстрее, если использовать не двоичную систему, а световые импульсы.
На данный момент создание устройства оптического компьютера еще на стадии планирования. А пока что будет налаживаться производство совместных технологий — световых и аналоговых.
Слайд 24В окне прозрачности воды доминирует поглощение света близкого к инфракрасному гемоглобином
в его различных формах. Гемоглобин содержится в эритроцитах и составляет приблизительно 40-45% цельной крови, обеспечивает перенос кровью кислорода от легких к тканям и транспорт углекислоты от тканей к легким. Другой функцией гемоглобина является поддержание кислотно-щелочного равновесия в организме. Молекула гемоглобина состоит из 1 молекулы простого белка глобина – белка типа альбуминов (содержит остатки аминокислот изолейцина и цистина) и 4 молекул железосодержащей небелковой группы – гема. Глобин придает гему способность связывать кислород. Гем обеспечивает устойчивость глобина к действию кислот, нагреванию, расщеплению ферментами и обусловливает его кристаллизацию. Молекула гемоглобина может нести четыре молекулы кислорода.
ГЕМОГЛОБИН
Слайд 7EnLight 256EnLigth256 от Lenslet – это первый оптический DSP (Digital
Signal Processor), превосходящий в три раза лучшие электронные DSP. Вообще-то,
если уже быть предельно точным, то EnLight256 – это гибридный оптический процессор – он не весь полностью оптический, а содержит преобразователи. В нем изменено только ядро (ведь все остальное остается таким же – электрическим), но получен огромный прирост производительности.
Ядро этого процессора – оптическое, а входная и выходная информация представляется в электронном виде. Ядро состоит из 256 VCSEL-лазеров, пространственного модулятора света, набора линз и приемников. Производительность процессора составляет 8 триллионов операций в секунду: за один такт (8 нс) процессор умножает 256-байтное число на матрицу 256х256.
Афанасьев Сергей А-13-08 Оптические компьютеры и устройства ЭВМ, использующие оптические элементы
Закон поглощения света
Относительно изменения интенсивности световой волны, которая проходит через вещество и испытывает поглощение, работает закон Бугера:
где $I_0$ — интенсивность волны света на входе в вещество, $I$ — интенсивность волны света на выходе, $x$ — толщина слоя вещества, $\alpha $ — коэффициент поглощения вещества, который связан с длиной волны света, веществом.
Явление поглощения применяют в спектральном анализе смесей газов. Этот прием основан на измерении спектров частот и интенсивностей полос поглощения, так как спектральную структуру при поглощении определяет состав молекул.
Пример 1
Во сколько раз изменится интенсивность света ($\frac{I_0}{I_2}$), если толщина слоя вещества, которое он прошел, равна $2x.$ Тогда как если свет в этом же веществе прошел путь $x$, его интенсивность уменьшается в три раза.
Решение:
В качестве основы для решения задачи используем закон Бугера:
\
Запишем закон (1.1) для случая, когда свет прошел путь $x$, и его интенсивность уменьшилась в три раза:
\
Возьмем натуральный логарифм от обеих частей выражения (1.3) получим:
\
Используем результат, полученный в (1.4), запишем интенсивность света на выходе из слоя ($I_2$) заданного вещества, если путь света равен $2x$:
\
Найдем искомое отношение:
\
Ответ: $\frac{I_0}{I_2}=e^{2ln3}=9.$
Пример 2
Задание: Почему одной из причин возникновения поглощения света называют столкновения атомов в веществе друг с другом?
Решение:
Атомы, внутри которых идут колебания, совершая тепловое движение, сталкиваются между собой. В результате каждого столкновения резко изменяются амплитуды и фазы гармонических колебаний. В результате этого идет переход энергии колебательных движений в тепло (то есть поглощение света).
Ударные затухания особенно сильно проявляются в плотных газах и при высоких температурах. В обычных условиях столкновения оказывают большее влияние на затухание, чем излучение.
Уширение спектральных линий
Затухание приводит к тому, что колебания становятся немонохроматическими. Что в свою очередь ведет к уширению спектральных линий. Так, естественной шириной спектральной линии называют ширину соответствующей линии, которая вызвана затуханием в результате излучения. Для того чтобы найти такую ширину требуется поле излучения:
требуется разложить в интеграл Фурье. В таком случае квадраты коэффициентов полученного разложения определят относительные спектральные плотности излучения $I\left(\omega \right):$
Форма линии спектра изображена на рис.1. Ширину спектральной линии обычно характеризуют расстоянием между точками $AA’$ (рис.1). Эти точки располагаются по разные стороны от центра лини. В них интенсивность света равна половине интенсивности в центре линии. Такое расстояние называют полушириной спектральной линии.
Рисунок 1.
Естественная полуширина спектральной линии равна:
В квантовой физике время излучения связано со временем жизни возбужденного состояния.
Естественное затухание свечения изолированных атомов и уширение линий спектра эмпирически исследовал В. Вин. Он заставлял каналовые лучи, которые состояли из светящихся атомов, проходить сквозь узкое отверстие в область, где поддерживался вакуум. В такой области атомы двигались без столкновений, при этом их свечение затухало, при увеличении расстояния от входа. Так оценивалось время естественного затухания. Средняя скорость движения атомов каналовых лучей измерялась по смещению линий спектра Доплера.
Слайд 22Вода — основное химическое вещество в человеческом теле, составляет 60 —
80% массы тела. Содержание воды меняется в зависимости от типа тканей и определяется возрастным и половым признаком. Например, у новорожденного мозг содержит до 90% массы воды, тогда как содержание воды во скелетной мышце взрослого составляет приблизительно 74%. Из-за ее высокой концентрации в большей части биологических тканей, вода является одним из самых важных хромофоров при измерениях спектроскопии тканей. Спектр поглощения воды показывают в диапазоне длин волн 200-10 000 нм и в увеличенном масштабе от 650 до 1050 нм. Между 200 и 900 нм существует область относительно низкого поглощения. Выше 900 нм коэффициент поглощения увеличивается довольно быстро до пика приблизительно в 970 нм.
СПЕКТР ПОГЛОЩЕНИЯ ВОДЫ
Заключение
Полностью оптические компьютеры — это мечта будущего, а пока доступны лишь технологии в симбиозе, которые идеально сочетают в себе оптику и аналоги.
Аналоговые технологии существенно ограничены в своих технических возможностях, потому что работают в непрерывном потоке, то есть, практически бесконтрольно. Это приводит к большим потерям сигнала и затратам электроэнергии. Такие манипуляции приводят к сильному нагреву электроники.
Применение оптических технологий станет прорывом в области передачи данных. Плюс ко всему, стоимость техники с такими возможностями не будет выше обыкновенного оборудования.
Сейчас подобным примером служит наличие смартфонов, так как их процессоры и микросхемы в них построены на симбиозе двух технологий, позволяющих совмещать малый размер и «умную» систему. Вполне возможно, в скором времени мы забудем о том, что такое полупроводники, так как их заменят оптические устройства.
Просмотры: 142