Зависимость плотности жидкости от температуры таблица

Плотность вещества и формула плотности вещества

Выбор смазочной жидкости

Выбор смазки должен быть ориентирован согласно допускам, указанным производителем силового агрегата

Учитывать необходимо и сезонность, что важно для климатических условий региона. В маркировке продукта плотность масел указывается цифрой вначале, например, из двух продуктов — 5W40 и 10W40 последнее будет наиболее плотным

При выборе смазочного состава необходимо учитывать такие моменты:

  • максимальная идентичность с продуктами, рекомендованными допусками моторных масел;
  • фирменная тара. Следует избегать приобретения на розлив из бочки;
  • оригинальный продукт. Внимательно изучайте товар на предмет подделки;
  • свежесть и срок годности.

На показания плотности оказывают влияние посторонние вещества, которые могут проникать в масла при износе или разгерметизации соединений. Определить такое явление можно с помощью масляного щупа (посторонние пятна) и контроля расходования смазки. Поможет в этом прибор под названием ареометр.

Показатели плотности горюче-смазочных продуктов:

760 кг/м3; диз. топливо

840 кг/м3;

  • антифриз — 1035—1085 кг/м3;
  • вода — 1000 кг/м3;
  • моторное масло — 880-930 кг/м3.

Учитывая эти показатели, просто определить наличие посторонних примесей, используя ареометр. При разгерметизации систем охлаждения значение увеличивается, а уменьшается при неисправности поршневой.

Чтобы быть уверенным в качестве смазочных материалов автолюбители могут воспользоваться маслотестером. Этот прибор позволяет узнать не только плотность с точностью до единиц, но и тип масел (синтетика, минералка, полусинтетика).

Правильный выбор смазочных материалов увеличит ресурс службы двигателя и избавит от дополнительных трат на ремонт и обслуживание.

>

Плотность однородных тел

Определение 2

Плотностью однородных тел называют отношение массы тела к его объему.

В понятие плотности вещества вмещают определение плотности однородного и равномерно распределенного тела с неоднородной структурой, которое состоит из этого вещества. Это постоянная величина и для большего понимания информации формируют специальные таблицы, где собраны все распространенные вещества. Значения по каждому веществу разделены на три составляющие:

  • плотность тела в твердом состоянии;
  • плотность тела в жидком состоянии;
  • плотность тела в газообразном состоянии.

Вода достаточно однородное вещество. Некоторые вещества не столь однородны, поэтому для них определяют среднюю плотность тела.
Для выведения этого значения необходимо знать результат ρ вещества по каждому компоненту в отдельности. Сыпучие и пористые тела обладают истинной плотностью. Она определяется без учета пустот в своей структуре. Удельную плотность можно рассчитать путём деления массы вещества на весь занимаемый им объём.

Подобные величины связаны между собой коэффициентом пористости. Он представляет собой отношение объёма пустот к общему объёму тела, которое в данный момент исследуется.

Плотность веществ зависит от многих дополнительных факторов. Ряд из них одновременно повышают для одних веществ эту величину, а для остальных — понижают. При низкой температуре происходит увеличение плотности вещества. Некоторые вещества способны реагировать на изменение температурного режима по-разному. В этом случае принято говорить, что плотность при определённом температурном диапазоне ведёт себя аномальным образом. К таким веществам часто относят бронзу, воду, чугун и некоторые другие сплавы. Плотность воды имеет наибольший показатель при 4 градусах по Цельсию. При дальнейшем нагреве или охлаждении этот показатель также существенно может изменяться.

Метаморфозы с плотностью воды происходят при переходе из одного агрегатного состояния в другое. Показатель ρ меняет в этих случаях свои значения скачкообразным образом. Он поступательно увеличивается при переходе в жидкость из газообразного состояния, а также в момент кристаллизации жидкости.

Существует, и немало, исключительных случаев. Например, кремний имеет при затвердевании небольшие значения по плотности.

Определение плотности вещества

Таким образом, для определения плотности вещества необходимо знать объем и массу образца этого вещества. Отношение этих величин и даст в результате плотность (обозначается греческой буквой «ро»):

$$\rho = {m \over V}$$

Из приведенной формулы можно вывести размерность плотности. В системе СИ масса измеряется в килограммах, а объем — в кубических метрах. Значит, единица плотности равна килограмму на кубический метр. Фактически плотность представляет собой удельную массу.

Как правило, для измерения массы используются обычные весы, а для измерения объема тело помещается в жидкость (в воду). Если сравнить исходный объем воды и объем воды с помещенным в нее телом, то разница этих значений будет равна объему тела.

Понятие плотности жидкости

Масса, которая заключена в единицу объема, называется плотностью жидкости. Если поступательно повышать единицу давления, то объем воды будет стремиться к уменьшению от первоначальной его величины. Разница значений составляет примерно 1 к 20000. Такой же порядок чисел будет иметь коэффициент объемного сжатия для иных капельных жидкостей. Как правило, на практике установлено, что серьезных изменений давления не происходит, поэтому принято не использовать на практике сжимаемость воды при расчете удельного веса и плотности в зависимости от давления.

Рисунок 3. Плотности различных жидкостей. Автор24 — интернет-биржа студенческих работ

Для расчетов плотности жидкости вводится понятие температурного расширения для капельных жидкостей. Оно характеризуется коэффициентом температурного расширения, которое выражает увеличение объема жидкости при увеличении температурного режима на 10 градусов по шкале Цельсия.

Таким образом, формируется показатель плотности для определенной жидкости. Ее принято учитывать при различном атмосферном давлении, температурных показателях. Выше представлена таблица, которая показывает плотности основных видов жидкостей.

Сколько кг в 1 литре воды?

Сколько граммов в 1 кг? если масса 1 л воды составляет 1 кг то какую часть литра составляет 1 г воды? Нам нужно знать некоторые правила. В одном килограмме ровно 1000 грамм. Известно, что 1 литр чистой воды весит ровно килограмм. Это значит, что 1 грамм воды составляет одну тысячную литра.

Знаешь ответ? Как написать хороший ответ? Будьте внимательны!

Копировать с других сайтов запрещено. Стикеры и подарки за такие ответы не начисляются. Используй свои знания. :)Публикуются только развернутые объяснения. Ответ не может быть меньше 50 символов!

Читать подробнее: Сколько граммов в 1 кг? если масса 1 л воды составляет 1 кг то какую часть литра составляет 1 г воды?

Аномальные и идеальные жидкости

Различают два вида жидкостей, исходя из их внутренних характеристик:

  • аномальные жидкости;
  • идеальные жидкости.

Определение 1

Аномальными жидкостями называют такие жидкости, которые не подчиняются закону вязкости Ньютона. Подобные жидкости способны начинать движение после момента касательного напряжения при прохождении предельного порога по минимуму. Такой процесс также называют начальным напряжением сдвига. Эти жидкости не могут двигаться при небольших напряжениях и испытывают упругие деформации.

К идеальным жидкостям относят воображаемую жидкость, которая не подвержена любым сжатиям и деформациям, то есть она лишена свойства вязкости. Для ее расчета необходимо вводить определенные поправочные коэффициенты.

Почему лед не тонет?

Все вещества в природе при нагревании расширяются, а при охлаждении сжимаются. Вода следует этому правилу, но лишь до известного предела. Она сжимается, охлаждаясь до +4°С. При такой температуре вода обладает наибольшей плотностью и весом. Охлаждаясь дальше и превращаясь в лед при 0°С, она вдруг проявляет «строптивость» и снова, В водоемах вода с температурой +4°С как самая тяжелая опускается на дно, а более холодная и легкая поднимается вверх, и часть ее становится льдом. И хотя зимой поверхность водоема скована льдом, на дне температура воды равна +4° С. Не будь этого, водоемы полностью промерзали бы.

Вязкость керосина в зависимости от температуры

Дана таблица значений динамической μ

и кинематической ν

вязкости керосина при положительных и отрицательных температурах в диапазоне от -50 до 300°С. Вязкость керосина определяется количеством и размерами ассоциатов молекул углеводородов в его составе. Масштаб таких молекулярных связей напрямую зависит от температуры этого топлива. При низких температурах они достаточно многочисленны и имеют крупные размеры, что делает керосин в этих условиях ощутимо вязким.

При комнатной температуре динамическая вязкость керосина имеет значение 0,00149 Па·с.
Кинематическая вязкость керосина при температуре 20°С равна 1,819·10 -6 м 2 /с. С повышением температуры этого топлива его вязкость уменьшается. Коэффициент кинематической вязкости имеет меньшую скорость такого снижения, чем динамический, поскольку плотность керосина также изменяется с температурой. Например, при нагревании керосина с 20 до 200 градусов его динамическая вязкость уменьшается в 5,7 раза, а кинематическая — в 4,8.

t, °С μ·10 3 , Па·с ν·10 6 , м 2 /с t, °С μ·10 3 , Па·с ν·10 6 , м 2 /с
-50 11,5 14,14 40 1,08 1,337
-45 9,04 60 0,832 1,047
-40 7,26 8,59 80 0,664 0,85
-35 5,96 100 0,545 0,711
-30 4,98 5,75 120 0,457 0,61
-25 4,22 140 0,39 0,53
-20 3,62 4,131 160 0,338 0,469
-15 3,14 180 0,296 0,421
-10 2,75 3,12 200 0,262 0,382
-5 2,42 220 0,234 0,35
2,15 2,61 240 0,211 0,325
5 1,92 260 0,191 0,304
10 1,73 280 0,174
20 1,49 1,819 300 0,159

Примечание: значения кинематической вязкости керосина в таблице получены расчетным путем через величину динамической вязкости и плотности.

Любая жидкость обладает собственными неповторимыми свойствами и характеристиками. В физике принято рассматривать ряд явлений, которые связаны с этим специфическими характеристиками.

Жидкости обычно разделяют на две основные категории:

  • капельные или малосжимаемые;
  • газообразные или сжимаемые.

Рисунок 2. Вычисление плотности жидкости. Автор24 — интернет-биржа студенческих работ

Эти классы жидкостей имеют принципиальные различия между собой. Так капельные жидкости существенно отличаются от газообразных. Они обладают определенным объемом. Его величина не будет изменяться под действием каких-либо внешних сил. В газообразном состоянии жидкости могут занимать весь объем, который у них имеется. Также подобный класс жидкости может в значительной степени изменять свой собственный объем, если на него влияют определенные внешние силы.

У жидкостей любого типа есть три свойства, с которыми они не могут расстаться:

  • плотность;
  • вязкость;
  • сила поверхностного натяжения.

Эти свойства способны влиять на многочисленные законы их движения, поэтому они имеют главное значение в процессе изучения и применения знаний на практике.

История

В 19-м веке как минимум одну треть бюджета Российской Империи составляли акцизы на алкогольные напитки. Акциз рассчитывается, в зависимости от крепости напитка (содержания чистого спирта)

Поэтому задача определения количества чистого спирта была на уровне государственной важности. До тех пор, пока к этой теме не подключилась наука, крепость определяли довольно занятными методами

Например, долгое время наиболее распространенным видом крепкого вина в России был так называемый полугар (38% спирта). Способ отличия полугара от менее качественного алкоголя, содержащего меньшее количество чистого спирта, был крайне прост — если поджечь полугар, то он должен гореть до тех пор, пока не выгорит половина его объема. Очевидно, что жечь спиртное для определения его крепости не всегда удобно, поэтому следующим шагом в истории российской водочной промышленности было привлечение западного опыта: для определения количества спирта стали применять ареометры (спиртометры) — приборы для определения содержания спирта, которые уже активно использовались в ведущих западных державах. Спиртометры 19-го века, созданные для применения в мягком климате западных стран, давали плохие результаты в условиях русских температур, кроме того были различия в способах измерения объемов и крепости алкоголя. Эти предпосылки послужили стимулом к активизации отечественной науки в области исследования свойств растворов спиртов.

Аномальные и идеальные жидкости

Различают два вида жидкостей, исходя из их внутренних характеристик:

  • аномальные жидкости;
  • идеальные жидкости.

Определение 1

Аномальными жидкостями называют такие жидкости, которые не подчиняются закону вязкости Ньютона. Подобные жидкости способны начинать движение после момента касательного напряжения при прохождении предельного порога по минимуму. Такой процесс также называют начальным напряжением сдвига. Эти жидкости не могут двигаться при небольших напряжениях и испытывают упругие деформации.

К идеальным жидкостям относят воображаемую жидкость, которая не подвержена любым сжатиям и деформациям, то есть она лишена свойства вязкости. Для ее расчета необходимо вводить определенные поправочные коэффициенты.

Цели
работы:

дать
студентам представление о методике
определения плотности нефтепродуктов;

научить
студентов учитывать величину плотности
при операциях учета расходования ГСМ.

Под
плотностью топлива
ρ
понимают его массу в единице объема.
Размерность плотности в системе единиц
СИ выражена в кг/м 3 .
Плотность нефтепродуктов зависит от
температуры, т. е. с ее повышением
плотность уменьшается, а с понижением
увеличивается. Плотность может быть
замерена при любой температуре, но
результат измерения обязательно приводят
к температуре +20 °С, принятой за стандартную
при оценке плотности топлив и масел.

Приведение
замеренной плотности к плотности при
стандартной температуре +20 °С производится
по формуле

ρ
20
=

ρ
t

+
γ(t

+

20),

где
ρ

плотность горючего при температуре
испытания, кг/м 3 ;
γ

— средняя температурная поправка,
кг/м 3 -град
(табл. 2); t

температура, при которой произведен
замер плотности топлива, °С.

Значения
поправок на плотность приведены в табл.
2.

Таблица
2

Понятие плотности

Из повседневного опыта известно, что масса любого тела зависит не только от его размера, но и от того, из чего тело состоит.

Если тела состоят из различных веществ, то предугадать, во сколько раз возрастет масса с увеличением размеров (не зная названия веществ), невозможно. Например, воздушный шарик может быть в несколько раз больше металлического, а весить при этом значительно меньше.

Почему так происходит?

Из курса физики в 7 классе известно, что вещество состоит из мельчайших частиц — молекул, которые в свою очередь состоят из атомов. Атомы состоят из ядра, в котором сосредоточена почти вся тяжесть, и облака легких электронов. Ядро состоит из одной или нескольких частиц-нуклонов (протонов и нейтронов, их массы почти одинаковы).

Рис. 1. Молекулы, атомы.

Несмотря на то, что практически вся масса атома сосредоточена в ядре, оно во много тысяч раз меньше электронного облака. Получается, что в одном и том же объеме может заключаться самое различное число элементарных частиц.

Например, радиус атома обычного водорода и тяжелого трития практически одинаков: $ {5}×{10}^{-11}$ м. Но ядро водорода состоит из одного протона, а ядро трития — из одного протона и двух нейтронов. И тритий весит втрое больше, чем обычный водород.

Для других веществ разница может быть еще больше. Электронные облака разных атомов имеют разную величину, но в любом атоме ядро в несколько тысяч раз меньше, а число нуклонов в нём может измеряться сотнями. Молекулы также могут содержать различные атомы, которые находятся друг от друга на разном расстоянии.

В одном и том же объеме различные вещества могут содержать разную массу. Для характеристики этого отличия существует понятие «плотность». Плотность вещества равна массе единицы его объема.

Рис. 2. Плотность вещества.

Сколько весит один литр воды?

Сколько граммов в 1 кг? если масса 1 л воды составляет 1 кг то какую часть литра составляет 1 г воды? Нам нужно знать некоторые правила. В одном килограмме ровно 1000 грамм. Известно, что 1 литр чистой воды весит ровно килограмм. Это значит, что 1 грамм воды составляет одну тысячную литра.

  1. Это 1 миллилитр.
  2. Так что 300 грамм воды — это 300 миллилитров воды.
  3. Но не забываем, что это касается только чистой воды.
  4. Если взять воду с растворенной солью или любыми другими растворенными веществами, то вес одного миллилитра жидкости будет увеличен.
  5. По этому если нужно измерить объем воды — пользуются мензуркой.

Знаешь ответ? Как написать хороший ответ? Будьте внимательны!

Копировать с других сайтов запрещено. Стикеры и подарки за такие ответы не начисляются. Используй свои знания. :)Публикуются только развернутые объяснения. Ответ не может быть меньше 50 символов!

Читать подробнее: Сколько граммов в 1 кг? если масса 1 л воды составляет 1 кг то какую часть литра составляет 1 г воды?

Чему равна плотность льда?

Лёд
Молярная масса 18,01528 г/моль
Плотность 0,9167 г/см³
Твёрдость 1,5
Термические свойства
Толщина льда Толщина льда
Температура воздуха 20-40 см
— 5 4 0, 5
-10 6 1, 5
-15 8 2

Плотность растительных масел при 15°С

Представлены значения плотности некоторых растительных и эфирных масел при температуре 15°С.

Представлена таблица значений плотности нефтяных и растительных масел при различных температурах.

Рассмотрены следующие типы масел: машинное, турбинное, редукторное, индустриальное, моторное, растительное и другие. Значения плотности масел (или удельного веса) в таблице указаны для жидкого агрегатного состояния масла при соответствующей температуре (в интервале от -55 до 360°С).

Плотность масел в жидкой фазе обычно находится в диапазоне от 750 до 995 кг/м 3

при комнатной температуре. Масло имеет и при попадании в воду образует пленку на ее поверхности. Плотность нефтяных масел в основном несколько ниже, чем растительных. Например, плотность моторного масла равна 917 кг/м 3 , машинного — от 890 кг/м 3 , а плотность подсолнечного масла составляет величину 926 кг/м 3 . Наиболее тяжелыми растительными маслами являются горчичное масло, масло какао и льняное масло. Удельный вес этих масел может достигать значения 940-970 кг/м 3 .

Плотность масел существенно зависит от температуры — при нагревании масла его удельный вес снижается.

Например, при температуре 20°С имеет величину 880 кг/м 3 , а при нагревании до температуры 120°С принимает значение 820 кг/м 3 . Плотность растительных масел также уменьшается при росте температуры — масло расширяется и становится менее плотным.

Следует отметить некоторые легкие нефтяные масла. К ним относятся: гидравлическое ВНИИ НП-403 (плотность 850 кг/м 3), ИЛС-10, ИГП-18 и трансформаторное масло (880 кг/м 3). Низким значением плотности (при нормальных условиях) среди растительных масел выделяются такие, как кукурузное, лавровое, оливковое и рапсовое масла.

Удельный вес масел часто указывают в не системных единицах измерения, а в размерности кг на литр (кг/л).

Это удобно для восприятия и сравнения например, с водой, плотность которой при 4°С равна 1 кг/л. Однако, для плотность масел в формулы необходимо подставлять в размерности кг/м 3 . не трудно. Например, плотность масла АМТ-300 при температуре 20°С равна 959 кг/м 3 или 0,959 кг/л. Таблица плотности масел

Масло Температура, °С Плотность, кг/м 3
CLP 100 20 910
CLP 320 20 922
CLP 680 20 935
АМГ-10 20…40…60…80…100 836…822…808…794…780
АМТ-300 20…60…100…160…200…260…300…360 959…937…913…879…849…808…781…740
Арахисовое 15 911-926
Букового ореха 15 921
Вазелиновое 20 800
Велосит 15 897
Веретенное 20 903-912
Виноградное (из косточек) -20…20…60…100…150 946…919…892…865…831
ВМ-4 (ГОСТ 7903-56) -30…-10…0…20…40…60…80…100 933…921…916…904…892…880…868…856
Гидравлическое ВНИИ НП-403 20 850
Горчичное 15 911-960
И-46ПВ 25 872
И-220ПВ 25 892
И-100Р (С) 20 900
И-220Р (С) 20 915
И-460ПВ 25 897
ИГП-18 20 880
ИГП-38 20 890
ИГП-49 20 895
ИЛД-1000 20 930
ИЛС-10 20 880
ИЛС-220 (МО) 20 893
ИТС-320 20 901
ИТД-68 20 900
ИТД-220 20 920
ИТД-320 20 922
ИТД-680 20 935
Какао 15 963-973
Касторовое 20 960
Конопляное 15 927-933
КП-8С 20 873
КС-19П (А) 20 905
Кукурузное -20…20…60…100…150 947…920…893…865…831
Кунжутное -20…20…60…100…150 946…918…891…864…830
Кокосовое 15 925
Лавровое 15 879
Льняное 15 940
Маковое 15 924
Машинное 20 890-920
Миндальное 15 915-921
МК 10…40…60…80…100…120…150 911…888…872…856…841…825…802
Моторное Т 20 917
МС-20 -10…0…20…40…60…80…100…130…150 990…904…892…881…870…858…847…830…819
Нефтяное 20 890
Оливковое 15 914-919
Ореховое 15 916
Пальмовое 15 923
Парафиновое 20 870-880
Персиковое 15 917-924
Подсолнечное (рафинир.) -20…20…60…100…150 947…926…898…871…836
Рапсовое 15 912-916
Свечного ореха 15 924-926
Смоляное 15 960
Соевое (рафинир.) -20…20…60…100…150 947…919…892…864…829
Соляровое Р.69 20 896
ТКП 20 895
ТМ-1 (ВТУ М3-11-62) -50…-20…0…20…40…60…80…100 934…915…903…889…877…864…852…838
ТП-22С 15 870-903
ТП-46Р 20 880
Трансформаторное -20…0…20…40…60…80…100…120 905…893…880…868…856…844…832…820
Тунговое 15 938-948
Турбинное Л 20 896
Турбинное УТ 20 898
Тыквенное 15 922-924
Хлопковое -20…20…60…100…150 949…921…894…867…833
ХФ-22 (ГОСТ 5546-66) -55…-20…0…20…40…60…80…100 1050…1024…1010…995…980…966…951…936
Цилиндрическое 20 969

Кроме того, значения плотности множества веществ и материалов (металлов и сплавов, продуктов, стройматериалов, пластика, древесины) вы сможете найти в

Упражнения

Упражнение №1

Плотность редкого металла осмия равна $22 \space 600 \frac{кг}{м^3}$. Что это означает?

Посмотреть ответ

Скрыть

Ответ:

Значение плотности показывает нам, какое количество вещества (его масса) будет находиться в объеме $1 \space м^3$. Итак, это означает, что масса осмия объемом $1 \space м^3$ будет равна $22 \space 600 \space кг$ или $22.6 \space т$.

Упражнение №2

Пользуясь таблицами плотностей (таблицы 1, 2), определите, плотность какого вещества больше: цинка или серебра; бетона или мрамора; бензина или спирта.

Показать ответ

Скрыть

Плотность цинка составляет $7100 \frac{кг}{м^3}$, а серебра — $10 \space 500 \frac{кг}{м^3}$. Получается, что плотность серебра больше плотности цинка.

Плотность бетона составляет $2300 \frac{кг}{м^3}$, а мрамора — $2700 \frac{кг}{м^3}$. Получается, что плотность мрамора больше плотности бетона.

Плотность бензина составляет $710 \frac{кг}{м^3}$, а спирта — $800 \frac{кг}{м^3}$. Получается, что плотность спирта больше плотности бензина.

Упражнение №3

Три кубика — из мрамора, льда и латуни — имеют одинаковый объем. Какой из них имеет большую массу, а какой — меньшую?

Показать ответ

Скрыть

Выразим массу из формулы плотности:$\rho = \frac{m}{V}$,$m = \rho V$.

Объем кубиков у нас одинаковый. Значит, чем больше плотность вещества, из которого изготовлен кубик, тем больше его масса.

Плотность мрамора составляет $2700 \frac{кг}{м^3}$, льда — $900 \frac{кг}{м^3}$, а латуни — $8500 \frac{кг}{м^3}$. У латуни наибольшая плотность, а у льда — наименьшая. Значит, кубик из латуни будет иметь наибольшую массу, а из льда — наименьшую.

Упражнение №4

Самое легкое дерево — бальза. Масса древесины этого дерева равна $12 \space г$ при объеме в $100 \space см^3$. Определите плотность древесины в $\frac{г}{см^3}$ и $\frac{кг}{м^3}$.

Дано:$m = 12 \space г$$V = 100 \space см^3$

$\rho — ?$

Показать решение и ответ

Скрыть

Решение:

Мы не стали переводить единицы измерения в СИ. Сначала мы рассчитаем плотность этой древесины в $\frac{г}{см^3}$, а затем переведем в $\frac{кг}{м^3}$.

Рассчитаем плотность по известной нам формуле:$\rho = \frac{m}{V}$,$\rho = \frac{12 \space г}{100 \space см^3} = 0.12 \frac{г}{см^3}$.

Теперь переведем полученное значение в $\frac{кг}{м^3}$:$\rho = 0.12 \frac{г}{см^3} = 0.12 \frac{0.001 \space кг}{0.01^3 \space м^3} = 0.12 \frac{10^{-3} \space кг}{10^{-6} \space м^3} = 0.12 \cdot 10^3 \frac{кг}{м^3} = 120 \frac{кг}{м^3}$.

Ответ: $\rho = 0.12 \frac{г}{см^3} = 120 \frac{кг}{м^3}$.

Упражнение №5

Кусочек сахара имеет размеры: $а = 2.5 \space см$, $b = 1 \space см$, $с = 0.7 \space см$ (рис. 53). Его масса равна $0.32 \space г$. Определите плотность сахара. Проверьте полученный результат по таблице 1.

Дано:$а = 2.5 \space см$$b = 1 \space см$$с = 0.7 \space см$$m = 0.32 \space г$

$\rho — ?$

Показать решение и ответ

Скрыть

Решение:

Чтобы рассчитать плотность сахара, нужно знать его объем. Его мы можем вычислить перемножив друг на друга известные высоту, ширину и длину:$V = a \cdot b \cdot c$.

Подставим в формулу плотности и рассчитаем ее:$\rho = \frac{m}{V} = \frac{m}{a \cdot \cdot b \cdot c}$,$\rho = \frac{0.32 \space г}{2.5 \space см \cdot 1 \space см \cdot 0.7 \space см} = \frac{0.32 \space г}{1.75 \space см^3} \approx 0.18 \frac{г}{см^3}$.

Полученный результат не совпадает с табличным ($\rho = 1.6 \frac{г}{см^3}$). Расчеты произведены верно, значит ошибка или в условии задачи, или мы наблюдаем очень необычный сахар.

Ответ: $\rho \approx 0.18 \frac{г}{см^3}$.

Задание

В вашем распоряжении имеются весы с разновесами, измерительный цилиндр с водой и металлический шарик на нити. Предложите, как определить плотность шарика.

Взвесим шарик, мы узнаем его массу. Чтобы определить его объем, мы можем использовать измерительный цилиндр с водой. Для этого нужно опустить шарик в воду, и посмотреть, до какого уровня теперь поднялась воды. Разность этого объема и первоначального объема жидкости будет равна объему шарику.

Вязкость жидкостей

Еще одним свойством любой жидкости является вязкость. Это такое состояние жидкости, которое способно оказывать сопротивление сдвига или иной внешней силы. Известно, что реальные жидкости обладают подобными свойствами. Она определяется в виде внутреннего трения при относительном перемещении частиц жидкости, находящихся рядом.

Существуют не только легко подвижные жидкости, но и более вязкие вещества. К первой группе обычно относят воздух и воду. У тяжелых масел сопротивление происходит на ином уровне. Вязкость может охарактеризовать степенью текучести жидкости. Также такой процесс называют подвижностью ее частиц, и он зависит от плотности вещества. Вязкость жидкостей в лабораторных условиях определяют вискозиметрами. Если вязкость жидкости в большей степени зависит только от прилагаемой температуры, то принято различать несколько основных параметров веществ. При увеличении температуры вязкости капельной жидкости стремится к уменьшению. Вязкость газообразной жидкости при схожих условиях только возрастает.

Сила внутреннего трения в жидкостях возникает при пропорциональности скорости градиента к площади слоев, которые осуществляют трение. При этом трение в жидкостях принято различать от процесса трения в иных телах твердого типа. В твердых телах сила трения будет зависеть от нормального давления, а не от площади трущихся поверхностей.

Как нельзя обращаться с подсолнечными маслами

  1. Нельзя оставлять продукт в сковороде, на плите без присмотра. Он может сильно раскалиться и самовоспламениться. Если такое произошло, накройте посуду с ним плотной мокрой тряпкой, но не лейте воду.
  2. Не стоит обжаривать продукты в перегретом масле, т. к. оно будет выстреливать и испортит запах и вкус еды.
  3. Нельзя вливать продукт в раскалившуюся посуду, т. к. температура ее может быть очень высокой, и содержимое может воспылать огнем, что приведет к пожару. Особенно это касается веществ с высокой плотностью.
  4. Нельзя хранить масло при световом освещении, которое провоцирует развитие окислительных реакций, разрушающих в продукте все полезные микроэлементы. К слову, нерафинированные вещества быстро лишаются своего цвета и выгорают. Эти процессы, к счастью, никоим образом не отражаются на качестве масла.
  5. Нельзя использовать продукт повторно. Масло при повторном использовании не дает пище никаких полезных веществ, т. к. они выгорели при первичном применении. Если не следовать этому правилу употребления, то токсичные соединения мутагенного и канцерогенного характера, образовавшиеся в веществе, попадут в желудок.
  6. Нельзя использовать в пищу просроченный продукт, т. к. велик риск нарушений пищеварительного процесса.

Общая характеристика

Каждый элемент занимает индивидуальную величину. Определение плотности может обозначаться греческой буквой ρ, D или d. Если объемы двух тел одинаковы, а массы различны, тогда плотности не идентичны.

Основные понятия

Определения и характеристики показателя известны с 7 класса школьной программы химии. Плотность представляет собой физическую величину о свойствах вещества. Это удельный вес любого элемента. Существует средняя и относительная плотность. Последняя классификация — это отношение плотности (П) вещества к П эталонного вещества. Часто за эталон принимают дистиллированную воду. Единица измерения П- кг/м3 в интернациональной системе.

Формула нахождения плотности:

P = m/V

Обозначения:

  • m — масса.
  • V — объем.

Кроме стандартной формулы плотности, применяемой для твердых состояний веществ, имеется формула для газообразных элементов в нормальных условиях.

ρ (газа) = M/Vm M

Расшифровка:

  • М — молярная масса газа [г/моль].
  • Vm — объем газа (в норме 22,4 л/моль).

Для сыпучих и пористых тел различают истинную плотность, вычисляемую без учета пустот, и удельную плотность, рассчитываемую как отношение массы вещества ко всему объему. Истинную П получают через коэффициент пористости — доли объема пустот в занимаемом объеме. Для сыпучих тел удельная П называется насыпной.

Способы измерения:

  • Пикнометр. Измеряет истинную П.
  • Ареометр, денсиметр, плотномер. Используется для жидкого состояния.
  • Бурик. Измеряет П почвы.

Вещества состоят из молекулярных структур, масса тела формируется из скопления молекул. Аналогично вес пакета с карамелью складывается из масс всех конфет в мешке. Если все сладости одинаковые, то массу упаковки определяют умножением веса одной конфеты на количество штук.

Молекулярные частицы чистого вещества одинаковы, поэтому вес капли воды равен произведению массы 1 молекулы Н2О на число составляющих молекул в капле. Плотность вещества показывает, чему равна масса одного кубического метра.

Плотность воды — 1000 кг/м³, а масса 1 м³ Н2О равна 1000 килограмм. Это число можно вычислить, умножив массу 1 молекулы воды на количество молекулярных частиц, содержащихся в 1 м3 объема.

При равнозначности физических масс двух тел их объемы различаются. Например, объём льда в девять раз больше объема бруска из металлического сплава. Масса тела распределяется неодинаково, устанавливает П в каждой точке тела.

Влияние факторов

П зависит от давления и температуры. При высоком давлении молекулы плотно прилегают друг к другу, поэтому вещество обладает значительной плотностью.

Зависимость показателей учитывается при расчете П. При повышении температуры П снижается из-за термического расширения, при котором объем вырастает, а масса остается прежней. Если температура снижается, П увеличивается, хотя имеются вещества, П которых при некоторых условиях температурного режима ведет себя иначе. Это вода, бронза, чугун. При фазовом переходе, модифицировании агрегатного состояния П меняется скачками. Условия вычисления зависят от свойств веществ, молекулярных элементов. Для разных природных объектов П изменяется в широком диапазоне.

П воды ниже П льда из-за молекулярной структуры твердой формы жидкости. Вещество, переходя из жидкой в твердую форму, изменяет молекулярную структуру, расстояние между составными частицами сужается и плотность увеличивается. Зимой, если забыть слить воду из труб, их разрывает на части после замерзания. На П Н2О влияют примеси. У морской воды знак П выше, чем у пресной. При соединении в одном стакане двух типов жидкости пресная останется на поверхности. Чем выше концентрация соли, тем больше П воды.

Когда плотность вещества больше П воды, оно полностью погрузится в воду. Предметы, сделанные из материала по низкой П, будут плавать на поверхности воды. На практике эти свойства используются человеком. Сооружая суда, инженеры-проектировщики применяют материалы с высокой П. Корабли, теплоходы, яхты смогут затонуть во время плавания, в корпусах суден создают специальные полости, наполненные воздухом, ведь его П ниже плотности воды.

Жирные пятна масла, нефти, бензина остаются на поверхности воды из-за низкой П маслянистых веществ.

Таблица влияния температуры на плотность керосина, кг/м3

Использованы температурные поправки, чтобы вычислить изменения объёма для разных марок керосина при различной температуре.

-20°C -10°C 0°C 10°C 30°C 40°C 50°C
ТС1 811 803,76 795,84 787,92 772,08 764,16 756,24
РТ 810,2 802,15 794,1 786,05 769,95 761,9 753,85
Т1 849,08 841,56 834,04 826,52 811,48 803,96 796,44
Т2 788,24 779,93 771,62 763,31 746,69 738,38 730,07
Т6 869,48 862,36 855,24 848,12 833,88 826,76 819,64
Осветительный 868,48 861,36 854,24 847,12 832,88 825,76 818,64
КО30 821,12 813,34 805,56 797,78 782,22 774,44 766,66
КО22 и 25 835,6 827,95 820,3 812,65 797,35 789,7 782,05
КО20 859 851,75 844,5 837,25 822,75 815,5 808,25

Нагрев всегда вызывает расширение. Это значит, что то же самое вещество займёт больше места. Приводятся справочные величины, опираясь на поправочный коэффициент.

Если более точно нужно посчитать, то можно использовать указанные ниже поправочные коэффициенты. Они показывают, насколько меняется объём 1 куба, когда температура меняется на 1 градус Цельсия.

  • ТС1 — 0,792
  • РТ — 0,805
  • Т1 — 0,752
  • Т2 — 0,831
  • Т6 — 0,712
  • Осветительный — 0,712
  • КО30 — 0,778
  • КО22 и 25 — 0,765
  • КО20 — 0,725

Важно помнить, что если температура падает, то прибавляем значение умноженное на число падения температуры, если растёт то убавляем умноженное значение. Почему так? При охлаждении вещество сжимается, при расширении увеличивается в объёме

Предположим куб керосина Т6 при +30 градусах весит 833 кг. Сколько куб станет весить при 0°C?

Падая до 0°C он потеряет 30°C, значит нужно 30 умножить на коэффициент и прибавить к 833. Помним, коэффициент это число которое меняет объём куба при смене его температуры на 1 градус.

Как именно?

Температура падает:Вес куба + (Температура * коэффициент) = 833 + (30 * 0,712) = 854 кг керосина Т6 в кубе, при температуре 0 градусов.

Если температура с +30 вырастет на ещё 30, значит нужно будет вычитать. Поскольку расширится вещество и займёт больше места, а значит в куб влезет уже меньше керосина.

Возможно возникнет путаница с непривычки рассчитывая эти значения, но просмотрев несколько раз расчёты, ясности станет больше.

Баррель керосина

  • Баррель это 158 литров. Известно что масса керосина в среднем составляет 0,8 кг на литр.
  • Значит:
    • 158 литров керосина в среднем весят 126 кг (158*0,8).
    • Что является 0.126 от 1 тонны.
    • В тонне 7,9 баррелей керосина.

По примеру этих расчётов можно посчитать для конкретной марки керосина, опираясь на данные таблиц выше.

Понравилась статья? Поделиться с друзьями:
Журнал «Наш дворик»
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: