Содержание
Чтобы определить световой поток, сначала умножьте спектральную плотность мощности облучения на значение относительной спектральной световой эффективности монохроматического излучения Vλи затем умножить в видимом диапазоне длин волн (т.е. от 380 до 780 нм). Полученный результат (Φeизмеряемая в Вт) должна быть умножена на фотометрический эквивалент излучения (Kmконстанта=683 лм/Вт)) .
nm> Phi_.V_lambda , mathrmламбда”. width=”” height=”” />
Например: если источник света излучает свет 1200 кд в направлении, перпендикулярном поверхности, на расстоянии 3 метров от этой поверхности, освещенность (Er) в точке, где свет достигает поверхности, составит 1200/32 = 133 люкс. Если поверхность находится на расстоянии 6 м от источника света, освещенность составит 1200/62= 33 лк. Это соотношение называется “законом обратного квадрата”.
Мощность светодиодной лампы
Мощность светодиодных ламп, как и любых других, измеряется в ваттах (Вт). Промышленность производит LED лампы:
- общего назначения – 3-15 Вт;
- промышленного назначения – до 100 Вт.
Вся прелесть светодиодных ламп заключается в низком потреблении электроэнергии по сравнению с другими – накаливания, например.
При этом они способны обеспечивать световой поток высокой интенсивности. Даже небольшая светодиодная лампочка в состоянии осветить с достаточной эффективностью небольшую комнату или лестничную площадку.
Ее более мощные «сестры» предназначенные для освещения промышленных объектов или улиц, потребляют 120-160 Вт, а по интенсивности светового потока могут конкурировать с ртутными лампами мощностью 400 Вт.
Освещенность
Освещенность представляет собой поверхностную плотность светового
потока, падающего на освещаемую поверхность. При равномерном
распределении светового потока F в пределах освещаемой поверхности
S значение освещенности можно определить как:
E = F / S.
Освещенность и сила света точечного источника света при нормальном
падении лучей (поверхность перпендикулярна лучам) связаны следующим
соотношением:
E = I / r²,
где r — расстояние от источника света до освещаемой поверхности.
Это выражение называется законом квадратов расстояний. Его
сформулировал еще в 1604 г. немецкий астроном Иоганн Кеплер. Следует
помнить, что освещенность будет оставаться постоянной вдоль пучка лучей
только тогда, когда они параллельны.
Рис. 5. К определению освещенности поверхности |
Если лучи от источника падают на поверхность под углом φ к нормали
(рис. 5), то тот же световой поток F распределяется по площади, в
1 / cosφ раз большей, чем S (по площади S / cosφ), и формула примет вид:
E = I·cosφ / r²,
Закон квадратов расстояний приемлем для расчета освещенности,
создаваемой осветительными приборами, но минимальное значение r
определяется таким параметром осветительного прибора как рабочее
расстояние.
Следует добавить, что освещенность поверхности может создаваться
не одним источником, как показано на рис. 5, а любым числом произвольно
расположенных источников, посылающих свет на освещаемую поверхность (или
ее элемент) с различных направлений и под разными углами к ее нормали.
Тогда общая освещенность будет равна сумме освещенностей поверхности
в данной точке от различных источников света:
E = E1 + E2 + E3 + … + En.
Эта формула представляет собой закон аддитивности, из которого
следует, что общая освещенность равна сумме освещенностей поверхности
в данной точке от различных источников света.
Единицей освещенности является люкс (лк, от лат. lux — свет).
То есть, 1 лк = 1 лм / 1 м². Внесистемная единица освещенности:
1 фот = 1 лм / 1 см². В США, Англии и других странах в качестве единицы
освещенности часто используется фут-кандела: 1 фут-кандела =
1 лм / 1 фут² = 10,764 лк.
Примеры [ | ]
Сила света, излучаемая свечой , примерно равна одной канделе, поэтому раньше эта единица измерения называлась «свечой», сейчас это название является устаревшим и не используется.
Для бытовых ламп накаливания сила света в канделах приблизительно равна их мощности в ваттах.
Сила света различных источников
Источник | Мощность, Вт | Примерная сила света, кд |
---|---|---|
Свеча | 1 | |
Современная (2010 г.) лампа накаливания | 100 | 100 |
Обычный светодиод | 0,015..0,1 | 0,005..3 |
Сверхъяркий светодиод | 1 | 25…500 |
Сверхъяркий светодиод с коллиматором | 1 | 1500 |
Современная (2010 г.) люминесцентная лампа | 22 | 120 |
Солнце | 3,83⋅10 26 | 2,8⋅10 27 |
Световой поток (Ф)
Данный физический параметр определяется как мощность видимого излучения источника или световая энергия, которая излучается светильником за единицу времени.
В то же время, световая энергия представляет собой энергию, распространяющуюся по всем направлениям и вызывающую зрительные ощущения. У каждого человека на одни и те же источники излучения разные зрительные ощущения, поэтому для расчётов берутся усреднённые показатели.
В физике для расчёта используется формула:
Ф = W/t, где:
- W – энергия, излучаемая источником, измеряется в ваттах,
- t – время работы прибора в секундах.
Также это величина, которая характеризует количество света, излучаемое осветительным прибором во всех направлениях.
Таким образом, вторая формула расчёта имеет вид:
Ф = I · w, где:
- I – сила света, измеряется в канделах,
- w – телесный угол, рассчитывается в стерадианах.
Примечания[править | править код]
Значение фотометрического эквивалента излучения Km однозначно задаётся определением основной фотометрической величины — канделы, а именно, одна кандела — это сила света, излучаемая в каком-либо направлении источником монохроматического излучения с частотой 540·1012Гц, имеющим в этом направлении мощность излучения 1/683 Ватт/стерадиан. Излучение с частотой 540·1012 Гц соответствует в воздухе длине волны 555 нм, то есть максимуму кривой спектральной чувствительности светлоадаптированного глаза. Поэтому коэффициент Km находится из тождества
1 кд = Km·Vλ(555)·1/683 Вт/ср,
откуда Km = 683 (кд·ср)/Вт = 683 лм/Вт.
Для случая ночного зрения значение фотометрического эквивалента излучения изменяется. Поскольку величина канделы не зависит от вида кривой спектральной чувствительности, то все предыдущие соображения остаются справедливыми. Для определения величины фотометрического эквивалента излучения ночного зрения K’m достаточно заменить значение Vλ(555)=1V_\lambda(555)=1 на Vλ′(555)=,402 V’_\lambda(555) =0,402 (на значение кривой спектральной чувствительности для ночного зрения на длине волны 555 нм). При этом получим K’m=1699 лм/Вт.
Человеческий глаз считается светлоадаптированным при яркостях более 100 кд/м². Ночное зрение наступает при яркостях менее 10−3 кд/м². В промежутке между этими величинами человеческий глаз функционирует в режиме сумеречного зрения.
Люмены и люксы
В люменах измеряется величина потока света, это характеристика его источника. То количество лучей, которое добралось до какой-либо поверхности (отражающей или поглощающей), уже будет зависеть от расстояния между источником и этой поверхностью.
Уровень освещенности измеряется в люксах (лк) специальным прибором – люксметром. Самый простой люксметр состоит из селенового фотоэлемента, преобразующего свет в энергию электрического тока, и стрелочного микроамперметра, измеряющего этот ток.
Спектральная чувствительность селенового фотоэлемента отличается от чувствительности человеческого глаза, поэтому в разных условиях приходится использовать поправочные коэффициенты. Самые простые люксметры предназначены для измерения какого-то одного типа освещенности, например, дневного света. Без использования коэффициентов погрешность может составлять более 10%.
Люксметры высокого класса оснащаются светофильтрами, специальными насадками сферической или цилиндрической формы (для измерения пространственной освещенности), приспособлениями для измерения яркости и контрольной проверки чувствительности прибора. Их уровень погрешности – около 1%.
Минимальная освещенность поверхности компьютерного стола по СанПиН – 400 люкс. Школьные парты должны иметь освещенность не менее 500 люкс.
2.2. Световые величины
Энергетические величины являются исчерпывающими с энергетической
точки зрения, но они не позволяют количественно оценить визуальное восприятие
излучения. Восприятие глазом определяется не только мощностью воспринимаемого
излучения, но также зависит от его спектрального состава (так как глаз
– селективный приемник излучения). Световые характеристики описывают,
как энергию излучения воспринимает зрительная система глаза с учетом спектрального
состава света.
2.2.1. Световые величины
Световые величины обозначаются аналогично энергетическим
величинам, но без индекса.
|
У световых величин нет никакой спектральной плотности,
так как глаз не может провести спектральный анализ.
Сила света:
Если в энергетических величинах исходная единица – это
, то в световых величинах
исходная единица – это сила света (так сложилось исторически). Сила света
определяется аналогично :
|
(2.2.1) |
– сила излучения эталона (эталонный излучатель или черное тело) при температуре
затвердевания платины ()
площадью .
Абсолютно черное тело
Рис.2.2.1. Абсолютно черное тело.
Поток излучения:
,
(2.2.2)
– это поток, который излучается источником с силой света
в телесном угле :.
Освещенность:
,
(2.2.3)
– освещенность такой поверхности, на каждый квадратный метр которой равномерно
падает поток в .
Светимость:
За единицу светимости принимают светимость такой поверхности,
которая излучает с
световой поток, равный .
Яркость:
За единицу яркости принята яркость такой плоской поверхности,
которая в перпендикулярном направлении излучает силу света с
.
2.2.2. Связь световых и энергетических
величин
Связь световых и энергетических величин связь устанавливается
через зрительное восприятие, которое хорошо изучено экспериментально.
Функция видности
– это относительная спектральная кривая эффективности . Она показывает, как глаз воспринимает излучение различного
спектрального состава.
– величина, обратно пропорциональная монохроматическим мощностям, дающим
одинаковое зрительное ощущение, причем воздействие потока излучения с
длиной волны
условно принимается за единицу. Функция видности глаза максимальна в области
желто-зеленого цвета (550–570 нм) и спадает до нуля для красных и фиолетовых
лучей (рис.2.2.2).
2.2.2. Функция видности глаза.
Определить некую световую величину
(поток, сила света, яркость, и т.д.), по спектральной плотности соответствующей
ей энергетической величины
можно по общей формуле:
|
(2.2.4) |
где
– функция видности глаза, 680 – экспериментально установленный коэффициент
(поток излучения мощностью
с длиной волны
соответствует
светового потока).
Например, сила света: (2.2.5)яркость: (2.2.6)
Другие единицы измерения световых величин:
сила света | ||
яркость | ||
освещенность |
Сопоставление энергетических и световых единиц:
Энергетические | Световые | ||
Наименование и обозначение | Единицы измерения | Наименование и обозначение | Единицы измерения |
поток излучения | световой поток | ||
энергетическая сила света | сила света | ||
энергетическая освещенность | освещенность | ||
энергетическая светимость | светимость | ||
энергетическая яркость | яркость |
2.2.3. Практические световые величины
и их примеры
Световая экспозиция
Световая экспозиция –
это величина энергии, приходящейся на единицу площади за некоторое время
(, накопленная
за время от
до ):
|
(2.2.7) |
Если освещенность постоянна, то экспозиция определяется
выражением:
(2.2.8)
Блеск
Для протяженного источника характеристика, воспринимаемая
глазом – . Для характеристика, воспринимаемая глазом – блеск (чем больше
блеск, тем больше кажется яркость). Блеск – это величина, применяемая
при визуальном наблюдении точечного источника света.
Блеск
– это освещенность, создаваемая точечным источником в плоскости зрачка наблюдателя,
.
Видимый блеск небесных тел оценивается в звездных
величинах .
Шкала звездных величин устанавливается следующим экспериментальным соотношением:
(2.2.9)
Чем меньше звездная величина, тем больше блеск. Например: – блеск,
создаваемый звездой первой величины, – блеск,
создаваемый звездой второй величины.
Яркость некоторых источников, : – поверхность
солнца, – поверхность
луны, – ясное
небо, – нить лампы
накаливания, – ясное
безлунное ночное небо, – наименьшая
различимая глазом яркость.
Освещенность, : – освещенность,
создаваемая солнцем на поверхности Земли (летом, днем, при безоблачном
небе),– освещенность
рабочего места, – освещенность
от полной луны, – порог
блеска (примерно 8-ая звездная величина).
Решение задач на определение световых величин рассматривается
в практическом занятии «Энергетика
световых волн», пункт «1.2.
Расчет световых величин».
Световой поток
Световой поток F является одной из основных световых величин
и представляет собой тот же лучистый поток, но оценивается по световому
ощущению, которое он производит на глаз человека. Т. е. световой поток —
это величина, образуемая от лучистого потока путем умножения
на коэффициенты спектральной чувствительности глаза по каждой из длин
волн видимого спектра.
Если энeргия излучается только на одной из длин волн λ,
то световой поток этого монохроматического излучения будет равен:
Fλ = Feλ·V(λ)
При таком представлении световой поток измеряется в ваттах, как
и лучистый. Чтобы различать эти потоки, для обозначения светового потока
добавляется слово «световой», т. е. получается световой ватт. Правда,
такая размерность светового потока практически не используется,
поскольку система СИ рекомендует в качестве единиц светового потока
люмены (от лат. lumen — свет).
Международным комитетом мер и весов в 1977 г. было
принято, что в фотометрии лучистый поток
1 Вт на длине волны в λ=555 нм (частота
излучения — 540.1012 Гц), обладающего наибольшей световой
эффективностью, эквивалентен световому потоку 683 лм. Почему коэффициент
для пересчета световых ватт в люмены равняется 683, будет рассказано
ниже при рассмотрении понятия силы света. С учетом этого коэффициента
формула для расчета светового потока (в люменах) для монохроматического
излучения примет вид:
F = 683·Feλ·V(λ)
Для определения светового потока во всем диапазоне видимых излучений
(380…780 нм) необходимо просуммировать все световые потоки
монохроматических составляющих:
F = 683·∑ Feλ·V(λ)
Таким образом, чтобы получить световой поток, излучаемый на любой
длине волны видимого спектра, необходимо умножить 683 лм/Вт
на соответствующий коэффициент относительной спектральной
чувствительности (см. рис.1 и табл.1) и на значение лучистого потока
на этой длине волны.
Например, световой поток натриевой лампы состоит из излучений
на 589 нм и 589,6 нм. Из данных, приведенных в табл. 1, следует, что при
лучистом потоке (мощности лампы), равном 10 Вт, V(589 нм) = 0,77,
V(589,6 нм) = 0,765, световой поток составит:
F = 683·5·0,77 + 683·5·0,765 = 5242,025 лм.
Значения световых потоков для некоторых источников света приведены в табл. 2.
Таблица 2. Световые потоки некоторых источников света | |
---|---|
Источник света | Световой поток, лм |
Лампа накаливания 220 В, 100 Вт | 1000 |
Лампа накаливания 220 В, 1000 Вт | 17000 |
Лампа накаливания 110 В, 10000 Вт | 295000 |
Лампа накаливания 220 В, 100 Вт | 400000 |
Поток, падающий на один квадратный метрповерхности Земли в ясный солнечный день | 100000 |
В качестве эталона одного люмена принят световой поток, излучаемый
с поверхности абсолютно черного тела площадью 0,5305 мм² при температуре
затвердевания платины, равной 2046°К. Государственный эталон,
соответствующий международным соглашениям, был разработан профессором П.
М. Тиходеевым. Он представляет собой двойной сосуд из оксида тория,
заполненный платиной. Выходное отверстие сосуда формирует трубка
из оксида тория, погруженная в платину. При расплавлении платины (под
воздействием индукционных токов) отверстие трубки светится, как
абсолютно черное тело.
Сила светового потока наружного освещения
Неосвещенные дворы и улицы уходят в прошлое. Соответственно, возрастают затраты на уличное освещение.
Поскольку для освещения улиц требуются мощные фонари, неудивительно, что все чаще потребители обращают свой взор на светодиодные изделия:
- их применение позволяет в 2-3 раза сократить энергопотребление;
- свет от светодиодов создают комфортность водителям и пешеходам.
Для уличного освещения чаще всего используются светильники:
- L-122 Холодный — мощностью 10 Вт со световым потоком 950 Вт;
- FL-20 – мощностью 20 Вт, обеспечивающий световой поток в 1700 Лм;
- LL-232 – тридцативаттные: световой поток составляет 2100 Лм.
А уличный светильник СТРИТ-150 обеспечивает световой поток, равный 13360 ЛМ. В него входят 60 светодиодов, общая мощность которых составляет всего 158 Вт.
Исходя из вышеизложенного, становится понятным стремление градоначальников заменить старые фонари на светодиодные.
Примечания
Wikimedia Foundation
.
2010
.
- Яркость
- Количество вещества
Смотреть что такое «Сила света» в других словарях:
сила света
— сила света: Физическая величина, определяемая отношением светового потока, распространяющегося от источника света внутри малого телесного угла, содержащего рассматриваемое направление, к этому углу. Источник …
СИЛА СВЕТА
— одна из осн. световых величин, характеризующая свечение источника видимого излучения в нек ром направлении. Равна отношению светового потока, распространяющегося от источника внутри элем. телесного угла, содержащего данное направление, к этому… … Физическая энциклопедия
СИЛА СВЕТА
— СИЛА СВЕТА, световой поток, распространяющийся внутри телесного угла, равного 1 стерадиану. Единица измерения силы света кандела (кд), равная силе света источника, испускающего в заданном направлении монохроматическое излучение с частотой… … Современная энциклопедия
Сила света
— СИЛА СВЕТА, световой поток, распространяющийся внутри телесного угла, равного 1 стерадиану. Единица измерения силы света – кандела (кд), равная силе света источника, испускающего в заданном направлении монохроматическое излучение с частотой… … Иллюстрированный энциклопедический словарь
сила света
— (Iν) Физическая величина, определяемая отношением светового потока, распространяющегося от источника света внутри малого телесного угла, содержащего рассматриваемое направление, к этому углу. Тематики оптика, оптические… … Справочник технического переводчика
СИЛА СВЕТА
— световой поток, распространяющийся внутри телесного угла, равного 1 стерадиану. Единица измерения в системе СИ кандела (кд) … Большой Энциклопедический словарь
сила света
— šviesos stipris statusas T sritis fizika atitikmenys: angl. light intensity vok. Lichtstärke, f rus. сила света, f; сила света источника, f pranc. intensité lumineuse, f; intensité lumineuse de la source, f … Fizikos terminų žodynas
сила света
— световой поток, распространяющийся внутри телесного угла, равного 1 стерадиану. Единица измерения в системе СИ кандела (кд). * * * СИЛА СВЕТА СИЛА СВЕТА, световой поток, распространяющийся внутри телесного угла, равного 1 стерадиану. Единица… … Энциклопедический словарь
сила света
— šviesos stipris statusas T sritis Standartizacija ir metrologija apibrėžtis Vienas pagrindinių SI dydžių, apibūdinantis regimosios šviesos šaltinio švytėjimą kuria nors kryptimi. Jis išreiškiamas šviesos srauto ir erdvinio kampo, kuriame sklinda… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
сила света I V
— 2.16 сила света IV: Отношение светового потока ФV, кд, исходящего от источника и распространяющегося внутри телесного угла ω, IV = ФV/ω. Единица измерения кд. Источник … Словарь-справочник терминов нормативно-технической документации
Книги
- Сила предков. Непознанная природа (количество томов: 2) , Радуга Михаил. В комплект входят следующие книги. «Непознанная природа» . По мнению автора, нет ничего таинственней и загадочней явлений, которые встречаются нам в повседневной жизни. Наш мир, в ключевых… Купить за 470 руб
- Сила цвета и цветотерапия: Используйте преобразующие силы света и цвета для здоровья и благополучия , Лилли Саймон и Сью. Цвет — это энергия света и универсальный язык общения всех существ. Любой цвет вызывает в нас перемены на всех существ. Любой цвет вызывает в нас перемены на всех уровнях — физическом,…
Света. Эта статья раскроет читателям свойства фотонов, которые позволят определить, почему свет бывает разной яркости.
Люмен и ватт
Энергосберегающие лампы при той же светоотдаче потребляют в 5-6 раз меньше электрической энергии, чем лампы накаливания. Светодиодные – в 10-12 раз меньше. Мощность светового потока уже не зависит от количества ватт. Но производители всегда указывают ватты, так как использование слишком мощных лампочек в не предназначенных для такой нагрузки патронах приводит к порче электроприборов или короткому замыканию.
Если расположить самые распространенные виды лампочек в порядке возрастания светоотдачи, можно получить такой список:
- Лампа накаливания – 10 люмен/ватт.
- Галогенная – 20 люмен/ватт.
- Ртутная – 60 люмен/ватт.
- Энергосберегающая – 65 люмен/ватт.
- Компактная люминесцентная лампа – 80 люмен/ватт.
- Металлогалогенная – 90 люмен/ватт.
- Светодиодная (LED) – 120 люмен/ватт.
Но большинство людей привыкли при покупке лампочек смотреть на количество ватт, указанное производителем. Чтобы подсчитать, сколько нужно ватт на квадратный метр, сначала стоит определиться, насколько ярким должен быть свет в помещении. 20 ватт лампы накаливания на 1 м² – такое освещение подойдет для рабочего места или гостиной; для спальни будет достаточно 10-12 ватт на 1 м². При покупке энергосберегающих ламп эти цифры делят на 5
Важно учесть и высоту потолка: если он выше 3 м, общее количество ватт следует умножить на 1,5
Сила света – основной показатель
Сила света относится к одной из первичных характеристик любого излучателя в установленном оптическом диапазоне. Она точно определяет, какое количество мощности переносится в тех или иных направлениях, ограниченных условным телесным углом. Поэтому на графическом изображении конфигурация силы света не будет иметь вид прямой линии.
Вершина телесного угла располагается в центре сферы. Единицей измерения этого угла служит стерадиан. Для его вычисления необходимо площадь воображаемого шара соотнести с квадратом радиуса. Поэтому стерадиан является безразмерной величиной, как и сам телесный угол. Согласно определения, на площадь сферы помещается 12,56 стерадиана или 4 Пи. Телесный угол является объемным и выглядит в виде конуса, вершина которого расположена в центре воображаемого шара. Однако его основание нельзя считать плоскостью, поэтому сравнение телесного угла и конуса будет не совсем корректным. В качестве основания рассматривается та часть сферы, которая отсекается боковой поверхностью. Вместе с тем, следует отметить, что сила света для проведения практических расчетов используется крайне редко. Вместо него стали пользоваться таким интегральным параметром как световой поток, значение которого наносится на все этикетки приборов освещения.
Индекс «υ»
Индекс υ означает, что величина не совсем фотометрическая. И связано это с тем, что человеческие возможности ограничены. Например, глаз воспринимает только видимый спектр электромагнитного излучения. Причем центральную часть этой шкалы (относится к зеленому цвету) люди видят гораздо лучше, чем краевые области (красный и фиолетовый). То есть фактически человек не воспринимает 100% фотонов желтого или голубого цвета. При этом существуют приборы, лишенные такой погрешности. Редуцированные величины, которыми оперирует формула освещенности (световой поток, например) и которые обозначаются греческой буквой «υ», имеют поправку на человеческое зрение.
Освещенность и музейные экспонаты
Статуя в Версальском дворце, Франция
Скорость, с которой ветшают, выцветают и иным образом портятся музейные экспонаты, зависит от их освещенности и от силы источников света. Сотрудники музеев измеряют освещенность экспонатов, чтобы убедиться, что на экспонаты попадает безопасное количество света, а также и для того, чтобы обеспечить достаточно света для посетителей, чтобы они могли хорошо рассмотреть экспонат. Освещенность можно измерить фотометром, но во многих случаях это бывает нелегко, так как он должен находиться как можно ближе к экспонату, а для этого часто необходимо убрать защитное стекло и выключить сигнализацию, а также получить на это разрешение. Чтобы облегчить задачу, работники музея часто пользуются фотоаппаратами как фотометрами. Конечно, это не замена точным измерениям в ситуации, где найдена проблема с количеством света, который попадает на экспонат. Но для того, чтобы проверить, нужна ли более серьезная проверка с фотометром, фотоаппарата вполне достаточно.
Экспозиция определяется фотоаппаратом на основе показаний об освещенности, и, зная экспозицию, можно найти освещенность, проделав ряд несложных вычислений. В этом случае сотрудники музеев пользуются либо формулой, либо таблицей с переводом экспозиции в единицы освещенности. Во время вычислений не стоит забывать, что камера поглощает часть света, и учитывать это в конечном результате.
Садоводы знают, что разные растения требуют разное количество света; для оценки освещенности растений можно использовать люксметры
Сила света
Конечно, свет от разных источников не распространяется равномерно. Одна лампа бьет очень узким лучом света, а другая наоборот — максимально широким.
Но если сравнить паспортные данные, оба могут иметь одинаковое количество люменов одновременно.
Вот почему фокусироваться только на люменах в корне неверно.
Например, при покупке лампы в Интернете не получается получить изначально задуманное освещение.
Помните еще раз, световой поток показывает только КОЛИЧЕСТВО света, независимо от направления его распространения.
Поэтому здесь все же нужно учитывать еще одну особенность — интенсивность света. Что это?
Это величина светового потока, деленная на телесный угол, в котором он распространяется.
Короче говоря, если световой поток — это количество света, то интенсивность света — это его «плотность”.
Сила света измеряется в канделах — Kd.
1 свеча соответствует 1 люмену, который распространяется внутри конуса 65 градусов.
Чтобы визуально представить силу 1 свечи, снова посмотрите на обычную свечу. Именно поэтому определение свечи происходит от латинского слова «свеча», что в переводе означает свеча.
Кстати, теоретически человеческий глаз может видеть свет от такого источника на расстоянии почти 50 км!
Однако из-за кривизны земной поверхности это расстояние эффективно сокращается до 5 км.
Основные выводы
Среднему потребителю нет необходимости знать точные определения терминов, используемых при расчете систем освещения. Если вам просто нужно заменить лампочку, помните, что ватт – это не люмен. Первый определяет мощность, второй – освещенность. При переходе на другой тип источника света можно обойтись без расчетов, найдя таблицу в Интернете.
В настоящее время при покупке ламп следует ориентироваться на количество люменов, а не ватт, и помнить, что это число во многом зависит от конструкции источника. Люминесцентная лампа, например, способна обеспечить яркость 2500-2500 люмен, в зависимости от типа колбы. Светодиодные источники являются наиболее распространенной проблемой при покупке некачественной продукции.
При выборе также следует учитывать падение яркости во время работы. Это варьируется от источника к источнику. Лампа накаливания может потерять до 15% светового потока, люминесцентная лампа – до 30%, а светодиодная лампа – до 5-10%. При покупке необходимо учитывать требуемую маржу.
Если вы сами ремонтируете систему освещения, лучше заказать расчет освещения. Любая ошибка может привести к дополнительным расходам. Учесть все нюансы самостоятельно без специального программного обеспечения невозможно. Если вы правильно выберете источник света, это поможет вам выбрать правильный тип лампы, чтобы сэкономить на расходах на электроэнергию. После установки не будет неприятных сюрпризов в виде недостаточной интенсивности освещения.
,lambda>
Читайте далее:
- Измерение освещенности: рабочее место без прибора, яркость света.
- Как измеряется сила света: единицы измерения, lx, как измеряется?.
- Используйте метод коэффициентов.
- Освещение. Что такое освещение?.
- Интенсивность света, формула: общая информация о понятии.
- 5 причин, почему лампочки часто перегорают в вашей квартире и что делать?.
- Самостоятельный расчет освещенности: формулы и примеры.