Титан

Физические свойства

Титан — лёгкий серебристо-белый металл. При нормальном давлении существует в двух кристаллических модификациях: низкотемпературный α-Ti с гексагональной плотноупакованной решёткой (гексагональная сингония, пространственная группа C

6mmc , параметры ячейкиa = 0,2953 нм,c = 0,4729 нм,Z = 2) и высокотемпературный β-Ti с кубической объёмно-центрированной упаковкой (кубическая сингония, пространственная группаIm 3m , параметры ячейкиa = 0,3269 нм,Z = 2), температура перехода αβ 883 °C, теплота перехода ΔH =3,8 кДж/моль (87,4 кДж/кг). Большинство металлов при растворении в титане стабилизируют β-фазу и снижают температуру перехода αβ. При давлении выше 9 ГПа и температуре выше 900 °C титан переходит в гексагональную фазу (ω-Ti). Плотность α-Ti и β-Ti соответственно равна 4,505 г/см³ (при 20 °C) и 4,32 г/см³ (при 900 °C). Атомная плотность α-титана 5,67⋅1022 ат/см³.

Температура плавления титана при нормальном давлении равна 1670 ± 2 °C, или 1943 ± 2 К (принята в качестве одной из вторичных калибровочных точек температурной шкалы ITS-90. Температура кипения 3287 °C. При достаточно низкой температуре (-80 °C), титан становится довольно хрупким. Молярная теплоёмкость при нормальных условиях Cp

= 25,060 кДж/(моль·K), что соответствует удельной теплоёмкости 0,523 кДж/(кг·K). Теплота плавления 15 кДж/моль, теплота испарения 410 кДж/моль. Характеристическая дебаевская температура 430 К. Теплопроводность 21,9 Вт/(м·К) при 20 °C. Температурный коэффициент линейного расширения 9,2·10−6 К−1 в интервале от −120 до +860 °C. Молярная энтропия α-титанаS 0 = 30,7 кДж/(моль·К). Для титана в газовой фазе энтальпия формирования ΔH 0 f = 473,0 кДж/моль, энергия Гиббса ΔG 0 f = 428,4 кДж/моль, молярная энтропияS 0 = 180,3 кДж/(моль·К), теплоёмкость при постоянном давленииCp = 24,4 кДж/(моль·K)

Удельное электрическое сопротивление при 20 °C составляет 0,58 мкОм·м (по другим данным 0,42 мкОм·м), при 800 °C 1,80 мкОм·м. Температурный коэффициент сопротивления 0,003 К−1 в диапазоне 0…20 °C.

Пластичен, сваривается в инертной атмосфере. Прочностные характеристики мало зависят от температуры, однако сильно зависят от чистоты и предварительной обработки. Для технического титана твёрдость по Виккерсу составляет 790—800 МПа, модуль нормальной упругости 103 ГПа, модуль сдвига 39,2 ГПа. У высокочистого предварительно отожжённого в вакууме титана предел текучести 140—170 МПа, относительное удлинение 55—70 %, твёрдость по Бринеллю 716 МПа.

Имеет высокую вязкость, при механической обработке склонен к налипанию на режущий инструмент, и поэтому требуется нанесение специальных покрытий на инструмент, различных смазок.

При обычной температуре покрывается защитной пассивирующей плёнкой оксида TiO2, благодаря этому коррозионностоек в большинстве сред (кроме щелочной).

Температура перехода в сверхпроводящее состояние 0,387 К. При температурах выше 73 кельвин титан парамагнитен. Магнитная восприимчивость при 20 °C составляет 3,2·10−6. Постоянная Холла α-титана равна +1,82·10−13.

Изотопы

Основная статья: Изотопы титана

Известны изотопы титана с массовыми числами от 38 до 63 (количество протонов 22, нейтронов от 16 до 41), и 2 ядерных изомера.

Природный титан состоит из смеси пяти стабильных изотопов: 46Ti (изотопная распространенность 7,95 %), 47Ti (7,75 %), 48Ti (73,45 %), 49Ti (5,51 %), 50Ti (5,34 %).

Среди искусственных изотопов самые долгоживущие 44Ti (период полураспада 60 лет) и 45Ti (период полураспада 184 минуты).

Применение титана в химической промышленности

При производстве оборудования для химической промышленности самое важное значение имеет коррозионная стойкость металла. Существенно также снизить вес и повысить прочность оборудования

Логически следует предположить, что титановые листы, титановые трубы, титановые прутки ВТ1-0 (Grade 2, Gr.2, Gr2) могли бы дать ряд выгод при производстве из них оборудования для транспортировки кислот, щелочей и неорганических солей. Дополнительные возможности применения титана, поставляемого , открываются в производстве такого оборудования, как баки, колонны, фильтры и всевозможные баллоны высокого давления.

Применение трубопроводов из титановых труб и листов, поставляемых ООО «Вариант», способно повысить коэффициент полезного действия нагревательных змеевиков в лабораторных автоклавах и теплообменниках. О применимости титана ВТ6, ВТ14 для производства баллонов, в которых длительно хранятся газы и жидкости под давлением, свидетельствует применяемая при микроанализе продуктов сгорания вместо более тяжелой трубки из стекла. Благодаря малой толщине стенок и незначительному удельному весу эта трубка может взвешиваться на более чувствительных аналитических весах меньших размеров. Здесь сочетание легкости и коррозионной стойкости позволяет повысить точность химического анализа.

Широкое применение титан находит в производстве искусственного волокна, красителей, азотной кислоты, синтетических жирны кислот, хлорированных углеводородов, кальцинированной соды, в хлорорганическом синтезе, во многих агрессивных средах.

По объему применения титана цветная металлургия занимает второе место среди гражданских отраслей промышленности. Наибольшее распространение титановое оборудование получило на предприятиях кобальтово-никелевой и титаново-магниевой промышлености, а также в производстве меди, цинка, свинца, ртути и других металлов.

Титан применяется в качестве элемента, повышающего твердость алюминиевых сплавов, и модификатора, позволяющего получать мелкозернистую структуру металла.

Добавки титана повышают качество чугуна и стали. Отдельно или с другими элементами титан применяется как раскислитель при производстве многих низколегированых и углеродистых сталей.

Способы получения

Титан является одним из самых распространённых элементов на Земле. Содержание его в недрах планеты по массе составляет 0,57%. Самая большая концентрация металла наблюдается в «базальтовой оболочке» (0,9%), в гранитных породах (0,23%) и в ультраосновных породах (0,03%). Существует около 70 минералов титана, в которых он содержится в виде титановой кислоты или двуокиси. Главные минералы титановых руд это: ильменит, анатаз, рутил, брукит, лопарит, лейкоксен, перовскит и сфен. Основные мировые производители титана – это Великобритания, США, Франция, Япония, Канада, Италия, Испания и Бельгия. Существует несколько способов получения титана. Все они применяются на практике и вполне эффективны.

Магниетермический процесс.

Добывают руду, содержащую титан и перерабатывают его в диоксид, который медленно и при очень высоких температурных значениях подвергают хлорированию. Хлорирование проводят в углеродной среде. Затем хлорид титана, образовавшийся в результате реакции, восстанавливают магнием. Полученный металл нагревают в вакуумном оборудовании при высокой температуре. В результате магний и хлорид магния испаряются, остаётся титан с множеством пор и пустот. Губчатый титан переплавляют для получения качественного металла.

Гидридно-кальциевый метод.

Сначала получают гидрид титана, а затем разделяют его на компоненты: титан и водород. Процесс происходит в безвоздушном пространстве при высокой температуре. Образуется оксид кальция, который проходит отмывку слабыми кислотами. Гидридно-кальциевый и магниетермический методы обычно используются в промышленных масштабах. Эти методы позволяют получить значительное количество титана за небольшой промежуток времени, с минимальными денежными затратами.

Читать также: Тиски с поворотным механизмом

Электролизный метод.

Хлорид или диоксид титана подвергается воздействию высокой силы тока. В результате происходит разложение соединений.

Йодидный метод.

Диоксид титана взаимодействует с парами йода. Далее на титановый йодид воздействуют высокой температурой, в результате чего получается титан. Этот метод является наиболее эффективным, но и самым дорогостоящим. Титан получается очень высокой чистоты без примесей и добавок.

История открытия и названия

Титан был открыт 25 марта 1655 года голландским физиком, математиком и астрономом Христианом Гюйгенсом. Вдохновлённый примером Галилея, Гюйгенс вместе со своим братом Константином создал телескоп, имевший апертуру 57 мм и кратность увеличения более 50 раз.

С помощью этого телескопа Гюйгенс наблюдал за планетами солнечной системы — Марсом, Венерой, Юпитером и Сатурном. У последнего учёный заметил яркое тело, которое совершало полный оборот вокруг планеты за 16 дней. После четырёх оборотов, в июне 1655 года, когда кольца Сатурна имели низкий наклон относительно Земли и не мешали наблюдению, Гюйгенс окончательно удостоверился, что обнаружил спутник Сатурна. С момента изобретения телескопа это был второй случай открытия спутника, через 45 лет после обнаружения Галилеем четырёх крупнейших спутников Юпитера.

В течение более двух столетий спутник оставался фактически безымянным, Гюйгенс называл новое небесное тело просто Saturni Luna («Сатурнова луна» по-латыни). Некоторые астрономы называли его «Гюйгенсовым спутником» или просто «Huyghenian». После открытия Джованни Кассини ещё четырёх спутников Сатурна астрономы стали называть Титан как Сатурн IV, так как он находился в четвёртой позиции от планеты. После 1789 года подобная методика присвоения названий была упразднена в связи с открытием новых спутников, часть из которых располагалась на более близких орбитах к планете, чем уже известные.

Сравнение размеров Земли, Титана (слева внизу) и Луны

МимасЭнцелад

Получение[править | править код]


Брусок кристаллического титана (чистота 99,995 %, вес 283 г, длина 14 см, диаметр 25 мм), изготовленный на заводе «Уралредмет» иодидным методом ван Аркеля и де Бура.

Как правило, исходным материалом для производства титана и его соединений служит диоксид титана со сравнительно небольшим количеством примесей. В частности, это может быть рутиловый концентрат, получаемый при обогащении титановых руд. Однако запасы рутила в мире весьма ограничены, и чаще применяют так называемый синтетический рутил или титановый шлак, получаемые при переработке ильменитовых концентратов.

Для получения титанового шлака ильменитовый концентрат восстанавливают в электродуговой печи (ильменитовый концентрат + уголь-антрацит), при этом железо отделяется в металлическую фазу (чугун), а невосстановленные оксиды титана и примесей образуют шлаковую фазу. Богатый шлак перерабатывают хлоридным или сернокислотным способом.

Концентрат титановых руд подвергают сернокислотной или пирометаллургической переработке. Продукт сернокислотной обработки — порошок диоксида титана TiO2. Пирометаллургическим методом руду спекают с коксом и обрабатывают хлором, получая пары тетрахлорида титана TiCl4:

TiO2+2C+2Cl2→TiCl4+2CO{\displaystyle {\mathsf {TiO_{2}+2C+2Cl_{2}\rightarrow TiCl_{4}+2CO}}}

Образующиеся пары TiCl4 при 850 °C восстанавливают магнием:

TiCl4+2Mg→2MgCl2+Ti{\displaystyle {\mathsf {TiCl_{4}+2Mg\rightarrow 2MgCl_{2}+Ti}}}

Кроме этого, в настоящее время начинает получать популярность так называемый процесс FFC Cambridge, названный по именам его разработчиков Дерека Фрэя, Тома Фартинга и Джорджа Чена из Кембриджского университета, где он был создан. Этот электрохимический процесс позволяет осуществлять прямое непрерывное восстановление титана из оксида в расплаве смеси хлорида кальция и негашёной извести (оксида кальция). В этом процессе используется электролитическая ванна, наполненная смесью хлорида кальция и извести, с графитовым расходуемым (либо нейтральным) анодом и катодом, изготовленным из подлежащего восстановлению оксида. При пропускании через ванну тока температура быстро достигает ~1000—1100 °C, и расплав оксида кальция разлагается на аноде на кислород и металлический кальций:

2CaO→2Ca+O2{\displaystyle {\mathsf {2CaO\rightarrow 2Ca+O_{2}}}}

Полученный кислород окисляет анод (в случае использования графита), а кальций мигрирует в расплаве к катоду, где и восстанавливает титан из его оксида:

O2+C→CO2{\displaystyle {\mathsf {O_{2}+C\rightarrow CO_{2}}}}
TiO2+2Ca→Ti+2CaO{\displaystyle {\mathsf {TiO_{2}+2Ca\rightarrow Ti+2CaO}}}

Образующийся оксид кальция вновь диссоциирует на кислород и металлический кальций, и процесс повторяется вплоть до полного преобразования катода в титановую губку либо исчерпания оксида кальция. Хлорид кальция в данном процессе используется как электролит для придания электропроводности расплаву и подвижности активным ионам кальция и кислорода. При использовании инертного анода (например, диоксида олова), вместо углекислого газа на аноде выделяется молекулярный кислород, что меньше загрязняет окружающую среду, однако процесс в таком случае становится менее стабильным, и, кроме того, в некоторых условиях более энергетически выгодным становится разложение хлорида, а не оксида кальция, что приводит к высвобождению молекулярного хлора.

Полученную титановую «губку» переплавляют и очищают. Рафинируют титан иодидным способом или электролизом, выделяя Ti из TiCl4. Для получения титановых слитков применяют дуговую, электронно-лучевую или плазменную переработку.

ПРОИСХОЖДЕНИЕ

Титан находится на 10-м месте по распространённости в природе. Содержание в земной коре — 0,57 % по массе, в морской воде — 0,001 мг/л. В ультраосновных породах 300 г/т, в основных — 9 кг/т, в кислых 2,3 кг/т, в глинах и сланцах 4,5 кг/т. В земной коре титан почти всегда четырёхвалентен и присутствует только в кислородных соединениях. В свободном виде не встречается. Титан в условиях выветривания и осаждения имеет геохимическое сродство с Al2O3. Он концентрируется в бокситах коры выветривания и в морских глинистых осадках. Перенос титана осуществляется в виде механических обломков минералов и в виде коллоидов. До 30 % TiO2 по весу накапливается в некоторых глинах. Минералы титана устойчивы к выветриванию и образуют крупные концентрации в россыпях. Известно более 100 минералов, содержащих титан. Важнейшие из них: рутил TiO2, ильменит FeTiO3, титаномагнетит FeTiO3 + Fe3O4, перовскит CaTiO3, титанит CaTiSiO5. Различают коренные руды титана — ильменит-титаномагнетитовые и россыпные — рутил-ильменит-цирконовые. Месторождения титана находятся на территории ЮАР, России, Украины, Китая, Японии, Австралии, Индии, Цейлона, Бразилии, Южной Кореи, Казахстана. В странах СНГ ведущее место по разведанным запасам титановых руд занимает РФ (58.5%) и Украина (40.2%).

Общая характеристика титана и его сплавов

Именно основные механические свойства титановых сплавов определяют их большое распространение

Если не уделять внимание химическому составу, то все титановые сплавы можно охарактеризовать следующим образом:

  • Высокая коррозионная стойкость. Недостатком большинства металлов можно назвать то, что при воздействии высокой влажности на поверхности образуется коррозия, которая не только ухудшает внешний вид материала, но и снижает его основные эксплуатационные качества. Титан менее восприимчив к воздействию влажности, чем железо.
  • Хладостойкость. Слишком низкая температура становится причиной того, что механические свойства титановых сплавов существенно снижаются. Часто можно встретить ситуацию, когда эксплуатация при отрицательных температурах становится причиной существенного повышения хрупкости. Титан довольно часто применяется при изготовлении космических кораблей.
  • Титан и титановые сплавы имеют относительно низкую плотность, что существенно снижает вес. Легкие металлы получили широкое применение в самых различных отраслях промышленности, к примеру, в авиастроении, строительстве небоскребов и так далее.
  • Высокая удельная прочность и низкая плотность – характеристики, которые довольно редко сочетаются. Однако именно за счет подобного сочетания титановые сплавы сегодня получили самое широкое распространение.
  • Технологичность при обработке давлением определяет то, что сплав применяется часто в качестве заготовки при прессовании или другом виде обработки.
  • Отсутствие реакции на воздействие магнитного поля также назовем причиной, по которой рассматриваемые сплавы получили широкое применение. Часто можно встретить ситуацию, когда проводится производство конструкций, при работе которых образуется магнитное поле. Применение титана позволяет исключить вероятность возникновения связи.

Эти основные преимущества титановых сплавов определили их достаточно большое распространение. Однако, как ранее было отмечено, многое зависит от конкретного химического состава. Примером можно назвать то, что твердость изменяется в зависимости от того, какие именно вещества применяются при легировании.

Важно, что температура плавления может достигать 1700 градусов Цельсия. За счет этого существенно повышается устойчивость состава к нагреву, но также усложняется процесс обработки

Получение титана

Источник металла – диоксид титана.

Его образование происходит в процессе переработки ильменита. В результате образуется титановый шлак, который подвергается дальнейшей переработке. К концентрату добавляют серную кислоту, на выходе образуется двуокись титана.

Другой способ заключается в соединении с углеродом (кокс), хлором и дальнейшим нагреванием в присутствии магния.

Также применяют восстановление кальцием диоксида титана. Последний процесс заключается в проведении электрического тока, что ведет к разложению оксида кальция (кислород на аноде и собственно кальций).

Кислород выступает в роли окислителя, кальций, будучи металлом, переходит к катоду, попутно восстанавливая титан. Процесс происходит несколько раз. Исходом реакции служит титановая губка, требующая очищения.

Использование титана и его сплавов

Выделяют несколько технических сплавов с разной маркировкой ВТ1-00; ВТ1-0. В состав обоих входят:

  • углерод;
  • кислород;
  • азот;
  • водород;
  • железо;
  • кремний.

Однако в первом содержание представленных элементов выше, что обусловливает его преимущества перед ВТ1-0.

При легировании молибденом, ванадием, железом, повышается стабильность титана (или устойчивость) к температурным воздействиям. При добавлении алюминия, напротив, происходит снижение — это используют в промышленности, увеличивая диапазон химических превращений титана.

Используется в ракетном строительстве. На основе Ti изготавливают обшивку, различные агрегаты. Осуществляется производство компрессоров двигателей, цистерн для хранения. Титан нашел применение в самолетостроении, поскольку замедляет разрушение приборов.

Низкая теплопроводность позволила использовать его для изготовления противопожарных перегородок. В судостроении он предупреждает коррозию в морской воде.

В таблице представлены сведения о применении титана в зависимости от его свойств.

Высокая коррозионная сопротивление Трубы, теплообменники, реакторы
Низкий модуль упругости относительно стали Пружины, тяги в машиностроении
Легкость, низкий иммунный ответ Протезирование в медицине
Сохранение цвета Бытовые предметы, оправы, рамки
Долговечность Фасад, декор зданий, создание монументов, порошки, краски
Сплавы титана: превосходят по удельной прочности сталь Создание стали для брони

Месторождения космического материала

Самыми распространёнными являются залежи ильменита, они составляют порядка 800 млн тонн. Запасы рутиловых руд значительно меньше, но при сохранении роста добычи все они могут обеспечить человечество ещё на 100 лет. По запасам титана Россия уступает только Китаю и насчитывает 20 разведанных месторождений. Большинство из них — комплексные, где добывают также железо, фосфор, ванадий и цирконий. Сегодня крупнейшим мировым производителем титана считается российская металлургическая компания «ВСМПО-АВИСМА».

Обширные залежи располагаются на территории ЮАР, Украины, Канады, США, Бразилии, Австралии, Швеции, Норвегии, Египта, Казахстана, Индии и Южной Кореи. Они различаются содержанием металла в рудах и объёмами добычи, геологические изыскания не прекращаются. Даже на Луне были обнаружены запасы титаносодержащих руд, некоторые из них в десятки раз богаче крупных месторождений Земли. Это позволяет надеяться на снижение рыночных цен металла и расширение сферы использования.

Химические свойства[править | править код]

Устойчив к коррозии благодаря оксидной плёнке, но при измельчении в порошок, а также в тонкой стружке или проволоке титан пирофорен. Титановая пыль имеет свойство взрываться. Температура вспышки — 400 °C. Титановая стружка пожароопасна.

Титан устойчив к разбавленным растворам многих кислот и щелочей (кроме HF, H3PO4 и концентрированной H2SO4). Титан устойчив к влажному хлору и водным растворам хлора.

Легко реагирует даже со слабыми кислотами в присутствии комплексообразователей, например, с плавиковой кислотой HF он взаимодействует благодаря образованию комплексного аниона [TiF6]2−. Титан наиболее подвержен коррозии в органических средах, так как в присутствии воды на поверхности титанового изделия образуется плотная пассивная плёнка из оксидов и гидрида титана. Наиболее заметное повышение коррозионной стойкости титана заметно при повышении содержания воды в агрессивной среде с 0,5 до 8,0 %, что подтверждается электрохимическими исследованиями электродных потенциалов титана в растворах кислот и щелочей в смешанных водно-органических средах.

При нагревании на воздухе до 1200 °C Ti загорается ярким белым пламенем с образованием оксидных фаз переменного состава TiOx. Из растворов солей титана осаждается гидроксид TiO(OH)2·xH2O, осторожным прокаливанием которого получают оксид TiO2. Гидроксид TiO(OH)2·xH2O и диоксид TiO2амфотерны.

TiO2 взаимодействует с серной кислотой при длительном кипячении. При сплавлении с содой Na2CO3 или поташом K2CO3 оксид TiO2 образует титанаты:

TiO2+K2CO3→K2TiO3+CO2{\displaystyle {\mathsf {TiO_{2}+K_{2}CO_{3}\rightarrow K_{2}TiO_{3}+CO_{2}}}}

При нагревании Ti взаимодействует с галогенами (например, с хлором — при 550 °C). Тетрахлорид титана TiCl4 при обычных условиях — бесцветная жидкость, сильно дымящая на воздухе, что объясняется гидролизом TiCl4, содержащимися в воздухе парами воды и образованием мельчайших капелек HCl и взвеси гидроксида титана.

Восстановлением TiCl4водородом, алюминием, кремнием, другими сильными восстановителями, получен трихлорид и дихлорид титана TiCl3 и TiCl2 — твёрдые вещества, обладающие сильными восстановительными свойствами. Ti взаимодействует с Br2 и I2.

С азотом N2 выше 400 °C титан образует нитрид TiNx (x = 0,58—1,00). Титан — один из немногих элементов, которые горят в атмосфере азота.

При взаимодействии титана с углеродом образуется карбид титана TiCx (x = 0,49—1,00).

При нагревании Ti поглощает H2 с образованием соединения переменного состава TiHx (x = 2,00—2,98). При нагревании эти гидриды разлагаются с выделением H2.

Титан образует сплавы и интерметаллические соединения со многими металлами.

Нахождение в природе

В природе титан представлен в виде соединений с кислородом. Чистые формы не встречаются.

Под влиянием метеорологических условий по строению приближается к корунду (соединению алюминия с кислородом). Его обнаруживают в морской глине, в алюминиевых рудах с железом и кремнием.

Титан представлен в минералах: титанит, титаномагнетит, рутил. Известны австралийские, бразильские, канадские месторождения последнего. Минерал представлен в виде букрита и анатаза.

Широко встречаемым минералом служит титанат железа (ильменит). Крупные месторождения представлены в России, Северной Америке.

Самые прочные металлы в мире: топ-10

Можете ли вы представить, что произошло, если бы наши предки не обнаружили важные металлы, такие как серебро, золото, медь и железо? Наверное, мы бы до сих пор жили в хижинах, используя камень в качестве основного инструмента. Именно крепость металла сыграла важную роль в формировании нашего прошлого и теперь работают как основа, на которой мы строим будущее.

Некоторые из них очень мягкие и буквально тают в руках, как самый активный металл в мире. Другие — настолько твердые, что их невозможно согнуть, поцарапать или сломать без применения спецсредств.

А если вам интересно, какие металлы самые твердые и прочные в мире, мы ответим на этот вопрос, учитывая различные оценки относительной твердости материалов (шкала Мооса, метод Бринелля), а также такие параметры как:

  • Модуль Юнга: учитывает эластичность элемента при растяжении, то есть способность объекта к сопротивлению при упругой деформации.
  • Предел текучести: определяет максимальный предел прочности материала, после которого он начинает проявлять пластичное поведение.
  • Предел прочности при растяжении: предельное механическое напряжение, после которого материал начинает разрушаться.
Понравилась статья? Поделиться с друзьями:
Журнал «Наш дворик»
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: