Физика жидкостей

Плотность жидкости: определение

Плотность жидкости — это физическая величина, которая характеризует массу вещества, содержащегося в единице объема жидкости. Она показывает, насколько плотно упакованы молекулы или атомы вещества в жидком состоянии.

Плотность обозначается символом «ρ» (ро) и измеряется в килограммах на кубический метр (кг/м³) или граммах на кубический сантиметр (г/см³).

Плотность жидкости можно рассчитать по формуле:

ρ = m/V

где ρ — плотность жидкости, m — масса вещества, V — объем жидкости.

Зная плотность жидкости, можно определить, насколько она тяжела или легка в сравнении с другими жидкостями или веществами.

Капиллярность

Ещё одна интересная особенность жидкости – капиллярный эффект. Так называют её способность изменять свой уровень в трубках, узких сосудах, пористых телах.

Если опустить узкую стеклянную трубку (капилляр) в воду, то можно увидеть, как поднимается в ней водяной столбик. Чем уже трубка, тем выше столбик воды. Если опустить такую же трубку в жидкую ртуть, то высота столбика ртути окажется ниже уровня жидкости в сосуде.

Жидкость в капиллярах способна подниматься по узкому каналу (капилляру) только в том случае, если она смачивает его стенки. Так происходит в грунте, песке, стеклянных трубках, по которым легко поднимается влага. По этой же причине пропитывается керосином фитиль в керосиновой лампе, полотенце впитывает влагу от мокрых рук, происходят различные химические процессы. В растениях по капиллярам поступают к листьям питательные вещества и влага. Благодаря капиллярному эффекту возможна жизнедеятельность живых организмов.

Что такое вода — общее определение

В природе вода всегда содержит растворенные в ней вещества. Являясь сильнополярным растворителем, она в той или иной степени растворяет все вещества, с которыми контактирует. В результате такие характеристики воды как плотность, электропроводность и др. меняются из-за присутствия примесей.

Для жизни всей планеты важен круговорот веществ в природе, важнейшим из которых является круговорот воды. Испаряясь с поверхности природных водоемов, ее пары поднимаются вверх и формируют облака. В дальнейшем, выпадая в виде осадков, на землю вместе с водой возвращается масса химических веществ, которые в ней растворены. Круговорот воды влияет также на  формирование климата и погоды.

На планете Земля порядка  воды. Покрывая более 70% поверхности земли, водоемы составляют Мировой океан. В большинстве своем, это соленая вода, непригодная для употребления человеком и выращивания сельскохозяйственных структур. На долю пресной воды приходится всего 1,81%, большая часть ее заключена в ледниках, и подземных запасах (0,63%). Крайне незначительная часть влаги присутствует в атмосфере (0,001%).

Без воды невозможно существование живых организмов, поскольку она присутствует в их тканях и системах. Человек, способный обходиться без продуктов питания порядка 50-70 суток, не сможет жить без воды более 3-5 дней. На практике этот период может быть значительно меньше.

Изучение

Изучением движения и механического равновесия жидкостей и газов, а также их взаимодействия, в том числе с твердыми телами, занимается такой раздел механики как гидроаэромеханика. Его также называют гидродинамикой.

Несжимаемые жидкости изучают в подразделе гидроаэромеханики, который называется просто гидромеханикой. Так как сжимаемость жидкостей очень мала, во многих случаях ею попросту пренебрегают. Сжимаемые жидкости изучает газовая динамика.

Гидромеханику дополнительно подразделяют на гидростатику и гидродинамику (в узком смысле). В первом случае изучается равновесие несжимаемых жидкостей, а во втором – их движение.

Магнитная гидродинамика занимается изучением магнитных и электропроводных жидкостей, а прикладными задачами занимается гидравлика.

Основным законом гидростатики является закон Паскаля. Движение идеальных несжимаемых жидкостей описывается уравнением Эйлера. Для их стационарного потока выполняется закон Бернулли. А формула Торричелли описывает вытекание жидких веществ из отверстий. Движение вязких жидкостей подчиняется уравнению Навье-Стокса, которое, кроме всего прочего, может учитывать и сжимаемость.

Упругие волны и колебания в жидкости (как, впрочем, и в других средах) изучается такая наука как акустика. Гидроакустика – подраздел, который посвящен изучению звука в водной среде для решения задач подводной связи, локации и прочего.

Как определить плотность жидкости

Математический расчет плотности жидкого вещества выглядит как частное от деления взятой массы на тот объем, который оно занимает.

\(\rho=m\div V\)

Где m — масса жидкости, V — ее объем.

Единицей измерения плотности является кг/м3 (для системы СИ). Обозначение в системе CUC — г/см3.

Жидкость, представляющая собой смесь двух и более компонентов, имеет значение плотности, определяемой по формуле:

\(\rho=(\rho1\times V1+\rho2V2)\div(V1+V2)\)

Существует деление жидкостей на:

  1. Идеальные — имеются ввиду абсолютно подвижные жидкие вещества, на которых не действуют посторонние силы. Они неизменны в своем объеме. Таких жидкостей практически не бывает.
  2. Реальные — могут сжиматься, сопротивляться давлению, т.е. реагировать на посторонние силы.

Реальные, в свою очередь, подразделяются на:

  1. Ньютоновские — для них характерно послойное движение (сдвигание), скорость которого пропорциональна напряжению. Когда регистрируется абсолютный покой, напряжение равно нулю. К ньютоновским жидкостям относятся вода, масло, керосин, бензин и др.
  2. Бингамовские — жидкости, имеющие начальный предел текучести, ниже которого они не текут и имеют свойства твёрдого тела.

Основные физические свойства жидкости

Подобно твердому телу, жидкость обладает малой сжимаемостью и большой плотностью. Подобно газу, она не имеет упругости формы и легко течет. Молекулы жидкости, как и частицы твердого тела, совершают тепловые колебания, однако их положение равновесия время от времени изменяется, что и обеспечивает текучесть.

Также жидкости свойственна капиллярность — способность подниматься и опускаться в узких сосудах. Общая величина поверхности жидкости мала, и влияние стенок распространяется на всю поверхность. Сосуд в данном случае считается достаточно узким, капиллярным, если его размеры сравнимы с радиусом кривизны поверхности жидкости в нем. Это явление используют для обнаружения трещин размером от 1 мкм, не видных невооруженным глазом.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут

Классификация жидких тел 

Жидкости делятся на ньютоновские, т.е. подчиняющиеся законам вязкого трения Ньютона, и неньютоновские.

Каждая молекула жидкости плотно окружена со всех сторон своими ближайшими соседями, находящимися на расстояниях порядка ее диаметра \delta. Она колеблется вокруг положения равновесия, а затем резко перепрыгивает к новому центру колебаний. За секунду молекула успевает сменить место «оседлой жизни» около 100 миллионов раз, совершив между перескоками от тысячи до 100 тысяч колебаний. Чем сильнее межмолекулярное взаимодействие, тем ниже подвижность молекул и больше вязкость. Если на колеблющуюся молекулу действует постоянная внешняя сила, например, со стороны соседнего движущегося слоя, то в направлении этой силы частица будет совершать больше скачков, чем в противоположном. Поэтому и на ее хаотические блуждания наложится упорядоченное перемещение со скоростью\( v\;=\;(N_1\;-\;N_2)\;\times\;\delta.\)

\(\delta\) здесь — длина одного скачка, \(N_1\) и \(N_2\) — среднее число скачков за одну секунду в направлении силы и в противоположном направлении соответственно.

Приложенная сила совершает работу по раздвиганию тех молекул, между которыми протискивается рассматриваемая частица. Эта работа в конечном счете идет на увеличение скорости беспорядочного теплового движения молекул. Скорость упорядоченного движения не меняется со временем, т.е. течение жидкости равномерное, несмотря на действие внешней силы. Значит, приложенную силу уравновешивает сила сопротивления, которая определяется вязкостью. При увеличении температуры подвижность молекул возрастает. Это приводит к уменьшению силы сопротивления, так как в нагретой жидкости чаще создаются благоприятные условия для перемещения частиц в направлении приложенной силы.

Ньютон предположил, что величина этой силы, называемой силой внутреннего трения, пропорциональна разности скоростей элементов жидкости. Конечно, в сплошной среде никаких элементов нет и это понятие используют лишь для наглядности, а скорость жидкости распределена непрерывно. Следовательно, сила внутреннего трения F пропорциональна изменению скорости жидкости v в направлении, перпендикулярном движению, и зависит от площади S соприкосновения элементов жидкости:

\(F\;=\;\eta\;\times\;\frac{d\;\times\;v}{d\;\times\;n}\;\times\;S.\)

Это закон вязкого трения Ньютона. Жидкости, в которых внутреннее трение подобным образом зависит от изменения скорости, называются ньютоновскими, или жидкостями с линейной вязкостью. Вода, бензин, спирт, глицерин и многие другие жидкости являются ньютоновскими.

Но среди жидкостей довольно часто можно встретить такие, динамика которых описывается более сложными соотношениями: например, загустевающие краски, лаки, строительные растворы, мед, смолы, глинистые и болотистые почвы и др.

Первые модели неньютоновских жидких сред были предложены во второй половине XIX века Джеймсом Кларком Максвеллом и Уильямом Томсоном. В ХХ веке благодаря работам Бингама и Рейнера этот раздел механики сплошных сред стал самостоятельной наукой, которая носит название реология, произошедшее от греческого слова «реос» — «течение», «поток».

Механические характеристики жидкости

Механические особенности жидкости выступают центральным предметом изучения такой науки, как гидромеханика. Конкретно — ее раздела — гипотезы механики газа и жидкости. К главным механическим показателям, которые комплексно характеризуют рассматриваемое агрегатное состояние физических веществ, относятся: удельный вес, плотность и вязкость.

Под плотностью жидкого тела понимают его начальную массу, содержащуюся в одной единице объема. Этот параметр для разных химических соединений варьируется. Существуют уже измеренные и рассчитанные экспериментальным путем сведения по этому показателю, которые размещены в специальные таблицы.

Удельным весом в физике принято считать вес одной единицы общего объема жидкости. Данная величина напрямую зависит от температуры (при повышении ее вес постепенно снижается).

Для чего необходимо изучать механические свойства жидкостей? Эти знания считаются основой для понимания физических процессов, которые происходят в природе, внутри самого человеческого организма. Также при разработке технических средств и различной продукции следует учитывать принципы физики жидкости. Ведь жидкие вещества являются одной из самых распространенных агрегатных форм на нашей планете.

Давление в жидкости

Нормальная сила F называется силой давления и вызывает в жидкости нормальные напряжения сжатия, которые определяются отношением:

Нормальные напряжения, возникающие в жидкости под действием внешних сил, называются гидромеханическим давлением или просто давлением.

Системы отсчета давления

Рассмотрим системы отсчета давления. Важным при решении практических задач является выбор системы отсчета давления (шкалы давления). За начало шкалы может быть принят абсолютный нуль давления. При отсчете давлений от этого нуля их называют абсолютными — Pабс.

Однако, как показывает практика, технические задачи удобнее решать, используя избыточные давления Pизб, т.е. когда за начало шкалы принимается атмосферное давление.

Давление, которое отсчитывается «вниз» от атмосферного нуля, называется давлением вакуума Pвак, или вакуумом.

где Pатм — атмосферное давление, измеренное барометром.

Связь между абсолютным давлением Pабс и давлением вакуума Pвак можно установить аналогичным путем:

И избыточное давление, и вакуум отсчитываются от одного нуля (Pатм), но в разные стороны.

Таким образом, абсолютное, избыточное и вакуумное давления связаны и позволяют пересчитать одно в другое.

Единицы измерения давления

Практика показала, что для решения технических (прикладных) задач наиболее удобно использовать избыточные давления. Основной единицей измерения давления в системе СИ является паскаль (Па), который равен давлению, возникающему при действии силы в 1 Н на площадь размером 1 м2 (1 Па = 1 Н/м2).

Однако чаще используются более крупные единицы: килопаскаль (1 кПа = 103 Па) и мегапаскаль (1 МПа = 106 Па).

В технике широкое распространение получила внесистемная единица — техническая атмосфера (ат), которая равна давлению, возникающему при действии силы в 1 кгс на площадь размером 1 см2 (1 ат = 1 кгс/см2).

Соотношения между наиболее используемыми единицами следующие:

10 ат = 0,981 МПа ≈ 1 МПа или 1 ат = 98,1 кПа ≈ 100 кПа.

В зарубежной литературе используется также единица измерения давления бар

(1 бар = 105 Па).

В каких ещё единицах измеряется давление, можно посмотреть здесь

Рассмотрим некоторые свойства жидкостей, которые оказывают наиболее существенное влияние на происходящие в них процессы и поэтому учитываются при расчетах гидравлических систем.

Перегрев и переохлаждение

Среди увлекательных свойств жидкостей стоит отметить перегрев и переохлаждение. Эти процессы нередко ложатся в основу химических фокусов. При равномерном нагреве, без сильных перепадов температур и механических воздействий, жидкость может нагреться выше точки кипения, не вскипев при этом. Этот процесс получил название перегрев. Если в перегретую жидкость бросить какой-либо предмет, она мгновенно вскипит.

Аналогичным образом происходит и переохлаждение жидкости, то есть ее охлаждение до температуры ниже точки замерзания, минуя само замерзание. При легком ударе переохлажденная жидкость мгновенно кристаллизуется и превращается в лед.

Что одному двигателю хорошо, то другому грозит ремонтом

Многие автовладельцы уверены, что выбирать стоит более вязкие масла, ведь они — залог долговечной работы двигателя. Это серьезное заблуждение. Да, специалисты заливают под капоты гоночных болидов масло с большой степенью тягучести для достижения максимального ресурса силового агрегата. Но обычные легковые машины оборудованы другой системой, которая попросту захлебнется при чрезмерной густоте защитной пленки.

О том, какую вязкость масла допустимо использовать в двигателе той или иной машины, описано в любом руководстве по эксплуатации.

Почему класс вязкости так важен в работе механизмов? Представьте на минуту мотор изнутри: между цилиндрами и поршнем есть зазор, величина которого должна допускать возможное расширение деталей от высокотемпературных перепадов. Но для максимального коэффициента полезного действия этот зазор должен иметь минимальное значение, предотвращая попадание в двигательную систему выхлопных газов, образующихся во время горения топливной смеси. Для того, чтобы корпус поршня не нагревался от соприкосновения с цилиндрами, и используется моторная смазка.

Уровень вязкости масла должен обеспечивать работоспособность каждого элемента двигательной системы. Производители силовых агрегатов должны добиться оптимального соотношения минимального зазора между трущимися деталями и масляной пленой, предотвращая преждевременный износ элементов и повышая рабочий ресурс двигателя. Согласитесь, доверять официальным представителям автомобильной марки безопаснее, зная, каким путем эти знания были получены, чем верить «опытным» автомобилистам, полагающимся на интуицию.

Практическое применение плотности жидкости

Плотность жидкости имеет широкое практическое применение в различных областях нашей жизни. Вот некоторые из них:

Промышленность

В промышленности плотность жидкости играет важную роль при разработке и производстве различных продуктов. Например, в пищевой промышленности плотность используется для контроля качества и консистенции продуктов, таких как соки, молоко, масло и другие жидкие продукты. Также плотность используется в нефтяной промышленности для определения качества и состава нефтепродуктов.

Медицина

В медицине плотность жидкости используется для различных целей. Например, плотность крови может быть измерена для диагностики различных заболеваний. Также плотность используется при разработке и производстве лекарственных препаратов, чтобы обеспечить правильную дозировку и консистенцию.

Авиация и космонавтика

В авиации и космонавтике плотность жидкости играет важную роль при разработке и использовании топлива. Плотность топлива определяет его энергетическую эффективность и способность обеспечить необходимую тягу для самолетов и ракет.

Экология

В экологии плотность жидкости используется для измерения загрязнения водных ресурсов. Плотность может помочь определить концентрацию различных веществ в воде, таких как соли, металлы, пестициды и другие загрязнители.

Это лишь некоторые примеры практического применения плотности жидкости. В реальности она используется во многих других областях, включая химическую промышленность, строительство, гидрологию и многое другое.

Основные физические свойства жидкости плотность сжимаемость температурное расширение

В отличие от твердого тела жидкость характеризуется малым сцеплением между частицами, вследствие чего она обладает текучестью и принимает форму сосуда, в который ее помещают.

Жидкости подразделяют на два вида: капельные и газообразные. Капельные жидкости обладают большим сопротивлением сжатию (практически несжимаемы) и малым сопротивлением касательным и растягивающим усилиям (из-за незначительного сцепления частиц и малых сил трения между частицами). Газообразные жидкости характеризуются почти полным отсутствием сопротивления сжатию. К капельным жидкостям относятся вода, бензин, керосин, нефть, ртуть и другие, а к газообразным — все газы.

Гидравлика изучает капельные жидкости. При решении практических задач гидравлики часто пользуются понятием идеальной жидкости — несжимаемой среды, не обладающей внутренним трением между отдельными частицами.

К основным физическим свойствам жидкости относятся плотность, давление, сжимаемость, температурное расширение, вязкость.

Плотность — это отношение массы к объему, занимаемому этой массой. Плотность измеряют в системе СИ в килограммах на кубический метр (кг/м3). Плотность воды составляет 1000 кг/м3.

Используются также укрупненные показатели: – килопаскаль — 1 кПа= 103 Па; – мегапаскаль — 1 МПа = 106 Па.

Сжимаемость жидкости — это ее свойство изменять объем при изменении давления. Это свойство характеризуется коэффициентом объемного сжатия или сжимаемости, выражающим относительное уменьшение объема жидкости при увеличении давления на единицу площади. Для расчетов в области строительной гидравлики воду считают несжимаемой. В связи с этим при решении практических задач сжимаемостью жидкости обычно пренебрегают.

Величина, обратная коэффициенту объемного сжатия, называется модулем упругости. Модуль упругости измеряется в паскалях.

Температурное расширение жидкости при ее нагревании характеризуется коэффициентом температурного расширения, который показывает относительное увеличение объема жидкости при изменении температуры на 1 С.

В отличие от других тел объем воды при ее нагревании от 0 до 4 °С уменьшается. При 4 °С вода имеет наибольшую плотность и наибольший удельный вес; при дальнейшем нагревании ее объем увеличивается. Однако в расчетах многих сооружений при незначительных изменениях температуры воды и давления изменением этого коэффициента можно пренебречь.

Вязкость жидкости — ее свойство оказывать сопротивление относительному движению (сдвигу) частиц жидкости. Силы, возникающие в результате скольжения слоев жидкости, называют силами внутреннего трения, или силами вязкости.

Силы вязкости проявляются при движении реальной жидкости. Если жидкость находится в покое, то вязкость ее может быть принята равной нулю. С увеличением температуры вязкость жидкости быстро уменьшается; остается почти постоянной при изменении давления.

Cупе, все что надо, кратко и понятно. Спасибо!

Физические свойства жидкости

Термины, определения и параметры

Жидкость — физическое тело, которое обладает свойством текучести, т. е. не имеющее способности самостоятельно сохранять свою форму.Текучесть жидкости обусловлена подвижностью молекул, составляющих жидкость.

Жидкостью называется агрегатное состояние вещества, промежуточное между твердым и газообразным. Жидкость характеризуется следующими свойствами: 1) сохраняет объем; 2) образует поверхность; 3) обладает прочностью на разрыв; 4) принимает форму сосуда; 5) обладает текучестью. Свойства жидкости с 1) по 3) подобны свойствам твёрдых тел, а свойство 4) — свойству жидкости.

Жидкости, законы движения и равновесия которых изучаются в гидравлике (механике жидкости и жидкости), делятся на два класса: сжимаемые жидкости или газы, почти несжимаемые — капельные жидкости.

В гидравлике рассматриваются как идеальные, так и реальные жидкости.

Идеальная жидкость — жидкость, между частицами которой отсутствуют силы внутреннего трения. Вследствие этого такая жидкость не сопротивляется касательным силам сдвига и силам растяжения. Идеальная жидкость совершенно не сжимается, она оказывает бесконечно большое сопротивление силам сжатия. Такой жидкости в природе не существует — это научная абстракция, необходимая для упрощения анализа общих законов механики применительно к жидким телам.

Реальная жидкость — жидкость, которая не обладает в совершенстве свойствами идеальной жидкости, она в некоторой степени сопротивляется касательным и растягивающим усилиям, а также отчасти сжимается. Для решения многих задач гидравлики этим отличием в свойствах идеальной и реальной жидкостей можно пренебречь. В связи с этим физические законы, выведенные для идеальной жидкости, могут быть применены к жидкостям реальным с соответствующими поправками.

Ниже кратко представлены общие сведения, касающиеся физических свойств жидкостей. Ссылки на страницы с конкретными физическими свойствами разных жидкостей находятся в здесь. Эти разделы будут постепенно пополняться новой информацией, которая, возможно, окажется полезной инженерам и конструкторам при выполнении расчётов.

Вязкость

Среди главных свойств жидкостей, как и в случае с газами, стоит отметить вязкость. Вязкостью называют способность частиц сопротивляться движению друг относительно друга, то есть внутреннее трение. При движении соседних слоев жидкости относительно друг друга, происходит неизбежное столкновение молекул, и возникают силы, которые затормаживают упорядоченное перемещение. Кинетическая энергия упорядоченного движения преобразуется в тепловую энергию хаотического движения. Если жидкость, помещенную в сосуд, переместить, а затем оставить в покое, то она постепенно остановится, но ее температура возрастет.

Общая характеристика

Газ не сохраняет объем и форму, твердое тело сохраняет и то, и другое, а жидкость – только объем. Именно поэтому жидкое агрегатное состояние считается промежуточным. Поверхность жидкости представляет подобие упругой мембраны и определяет ее форму. Молекулы таких тел, с одной стороны, не имеют определенного положения, а с другой – не могут получить полную свободу перемещения. Они могут собираться в капли и течь под собственной поверхностью. Между молекулами жидкости существует притяжение, которого достаточно, чтобы удерживать их на близком расстоянии.

Вещество пребывает в жидком состоянии в определенном температурном интервале. Если температура опускается ниже него, происходит переход в твердую форму (кристаллизация), а если поднимается выше – в газообразную (испарение). Границы данного интервала для одной и той же жидкости могут колебаться в зависимости от давления. К примеру, в горах, где давление существенно ниже, чем на равнинах, вода закипает при более низкой температуре.

Обычно жидкость имеет только одну модификацию, поэтому является одновременно и агрегатным состоянием, и термодинамической фазой. Все жидкости делятся на чистые вещества и смеси. Некоторые из таких смесей имеют определяющее значение в жизни человека: кровь, морская вода и прочие.

Рассмотрим основные свойства жидкостей.

Классификация

Рассмотрев основные физические свойства жидкостей, давайте узнаем, как они классифицируются. Структура и свойства жидких веществ зависят от индивидуальности частиц, входящих в их состав, а также характера и глубины взаимодействия между ними. Исходя из этого, выделяют:

  1. Атомарные жидкости. Состоят из атомов или сферических молекул, которые связаны между собой центральными ван-дер-ваальсовыми силами. Ярким примером являются жидкий аргон и жидкий метан.
  2. Жидкости, состоящие из двухатомных молекул с одинаковыми атомами, ионы которых связаны кулоновскими силами. В качестве примера можно назвать: жидкий водород, жидкий натрий и жидкую ртуть.
  3. Жидкости, которые состоят из полярных молекул, связанных путем диполь-дипольного взаимодействия, например, жидкий бромоводород.
  4. Ассоциированные жидкости. Имеют водородные связи (вода, глицерин).
  5. Жидкости, которые состоят из больших молекул. Для последних, важную роль играют внутренние степени свободы.

Вещества первых двух (реже трех) групп называют простыми. Они изучены лучше, чем все остальные. Среди непростых жидкостей, больше всего изучена вода. В данную классификацию не входят жидкие кристаллы и квантовые жидкости, так как они представляют собой особые случаи и рассматриваются отдельно.

С точки зрения гидродинамических свойств, жидкости подразделяют на ньютоновские и неньютоновские. Течение первых подчиняется закону Ньютона. Это значит, что их касательное напряжение линейно зависит от градиента скорости. Коэффициент пропорциональности между указанными величинами называется вязкостью. У неньютоновских жидкостей, вязкость колеблется в зависимости от градиента скорости.

Тяжелая вода

При электролизе обычной воды, содержащей наряду с молекулами Н О также незначительное количество молекул D O, образованных тяжелым изотопом водорода, разложению подвергаются преимущественно молекулы Н О. Поэтому при длительном электролизе воды остаток постепенно обогащается молекулами D O. Из такого остатка после многократного повторения электролиза в 1933 г. впервые удалось выделить небольшое количество воды
состоящей почти на 100% из молекул D О и получившей название тяжелой воды.

По своим свойствам тяжелая вода заметно отличается от обычной воды (таблица). Реакции с тяжелой водой протекают медленнее, чем с обычной. Тяжелую воду применяют в качестве замедлителя нейтронов в ядерных реакторах.

Константа Н2О D2О
Молекулярная масса 18 20
Температура замерзания, °С, 3,8
Температура кипения, °С, 100 101,4
Плотность при 25°С, г/см 0,9971 1,1042
Температура максимальной плотности, °С 4 11,6

Последствия заливки масла повышенной вязкости

Бывают случаи, когда автовладельцы, не знают, как определить требуемую вязкость моторного масла для своего автомобиля, и заливают то, которое советуют продавцы. Что случится, если тягучесть окажется выше требуемой?

Если в хорошо прогретом двигателе «плещется» масло с завышенной тягучестью, то для мотора опасности не возникает (при нормальных оборотах). В этом случае, просто повысится температура внутри агрегата, что приведет к снижению вязкости смазки. Т.е. ситуация придет в норму. Но! Регулярное повторение данной схемы заметно снизит моторесурс.

Если резко «дать газу», вызвав увеличение оборотов, степень вязкости жидкости не будет соответствовать температуре. Это приведет к превышению максимально допустимой температуры в моторном отсеке. Перегрев вызовет повышение силы трения и снижение износостойкости деталей. Кстати, само масло также потеряет свои свойства за достаточно короткий промежуток времени.

О том, что вязкость масла не подошла транспортному средству, моментально узнать вы не сможете.

2.1. Основные свойства капельных жидкостей

Основная система единиц, применяемая в настоящее время это система СИ. Основными механическими единицами системы СИ являются: длина, измеряемая в метрах, масса, измеряемая в кг, время, измеряемое в секундах.

1. Плотностью

называется масса вещества, содержащаяся в единице объема. Различают абсолютную и относительную плотность. Абсолютная плотность для однородной жидкости равняется величине массыМ жидкости в объемеV, поделенной на величину этого объемаV Плотность измеряется в системе СИ в кг/м 3 , плотность пресной воды при 4ºС составляетρв

= 1000 кг/м 3 , морской водыρмв = 1025 кг/м 3 , плотность рабочей жидкости МГ-30 при 20 ºСρрж = 880 кГ/м 3 , плотность воздуха –ρвз = 1,25 кг/м 3 .

Относительной плотностью называется отношение плотности жидкости при заданной температуре к плотности воды при температуре 4 °С, поскольку масса 1 л воды при 4 °С равна 1 кг. Относительная плотность обозначается δ .

Например, если 1 л бензина при 20 °С имеет массу 730 г, а 1 л воды при 4 °С – 1000 г, то относительная плотность бензина будет равна 0,73.

Относительная плотность для ртути δрт= ρрт/ρв= 13600/1000 = 13,6, для воздуха δвз= ρвз/ρв = 0,00125, для рабочей жидкости- масла на минеральной основе δж= ρж/ρв= 880/1000 = 0,88

2. Удельным весом

называют вес единицы объема жидкости. Для однородной жидкости удельный вес равняется величине весаG жидкости, поделенной на величину объемаV , который она занимает

Удельный вес измеряется в системе СИ в Н/м 3 .

В системе СИ удельный вес воды при 4ºС составляет γ =ρв*g = 1000*9,81 = 9,81*10 3 Н/м 3 , удельный вес рабочей жидкости МГ-30 при 20 ºС составляетγ = 880*9,81 = 8,64*10 3 Н/м 3 .

В технической системе МКГСС – длина в метрах, основная единица – сила в килограммах силы(кГс), время в секундах.

Удельный вес воды в системе МКГСС равен γв

= 1000 кГс/м 3 , а рабочей жидкостиγрж = 880 кГс/м 3 .

Если жидкость неоднородна, то формулы (2.1) и (2.2) определяют средние значения удельного веса или плотности.

Применение и значение воды

Благодаря особым свойствам воды на Земле существует жизнь. То, что она, имея температуру, приемлемую для земных организмов, остается в жидком состоянии, обеспечило современное состояние земной поверхности, способствовало зарождению всех форм жизни.

При протекании химических реакций вода часто выступает в роли катализатора или растворителя. Ее роль в аккумуляторных электролитах, лекарственных формах, напитках, буферных растворах огромна. Из природных растворов методом выпаривания получают чистые химические вещества. Однако и в природном состоянии их применяют в ходе физиотерапевтических процедур, при водолечении, бальнеолечении и т.п. Проведение таких процедур позволяет ускорить выздоровление больных.

Говоря о роли воды в природе, нельзя не упомянуть о ее влиянии на формирование климата. Будучи веществом с высокой теплоемкостью, она в составе океанов поглощает тепло, которое в последующем отдает обратно, в атмосферу, что делает климат на планете более мягким. Важную роль играют холодные и теплые течения, например, Гольфстрим. Из-за него климат в Англии, Мурманске теплее и мягче, чем на континентальной части.

Воду в виде пара содержит атмосфера. Именно эта влага способна задерживать тепло, которое излучает Земля. Ученые считают, что, благодаря такому эффекту (парниковый эффект), наша планета сохраняет практически постоянную температуру и сохраняет жизнь во всех формах ее сегодняшнего проявления.

Примеры плотности различных жидкостей

Плотность жидкости — это масса единицы объема этой жидкости. Различные жидкости имеют разные плотности в зависимости от их состава и условий окружающей среды. Вот несколько примеров плотности различных жидкостей:

Вода

Плотность воды составляет около 1 г/см³ при нормальных условиях (температура 20°C, давление 1 атмосфера). Это делает воду удобной для использования в различных областях, таких как питьевая вода, промышленность и сельское хозяйство.

Масло

Масло имеет различные типы и составы, поэтому его плотность может варьироваться. Например, плотность оливкового масла составляет около 0,92 г/см³, а плотность моторного масла может быть около 0,85 г/см³. Масло используется в кулинарии, промышленности и автомобильной отрасли.

Спирт

Плотность спирта также может варьироваться в зависимости от его типа и концентрации. Например, плотность этилового спирта составляет около 0,79 г/см³, а плотность изопропилового спирта — около 0,79 г/см³. Спирт используется в медицине, химической промышленности и в качестве растворителя.

Молоко

Плотность молока может варьироваться в зависимости от его жирности и состава. Обычно плотность коровьего молока составляет около 1,03 г/см³. Молоко используется в пищевой промышленности и является важным источником питательных веществ.

Мед

Плотность меда может варьироваться в зависимости от его вида и содержания сахаров. Обычно плотность меда составляет около 1,36 г/см³. Мед используется в пищевой промышленности, медицине и косметической отрасли.

Это лишь несколько примеров плотности различных жидкостей. В реальности существует множество других жидкостей с разными плотностями, которые используются в различных областях нашей жизни.

Факторы, влияющие на плотность

Плотность различается от материала к другому из-за разницы в:

  1. Атомный вес элемента или молекулярный вес соединения.
  2. Расстояние между атомами (межатомные расстояния) или молекулами (межмолекулярные пространства).

Плотность считается характерным свойством для материала, потому что ят является постоянным для того же самого материала и не изменяется как масса или объем материала изменяется при той же температуре ,он изменяет путем изменения типа материала или изменения температуры , такповышение температуры изменяет межмолекулярные пространства между атомами или молекулами и, следовательно, плотность .

Понравилась статья? Поделиться с друзьями:
Журнал «Наш дворик»
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: