Как работает стабилитрон и для чего он нужен?

Стабилитрон: принцип работы, маркировка, обозначение, параметры, свойства

Стабилитрон в электронике и электротехнике

Стабилитрон – полупроводниковый элемент, используемый в электронике и электротехнике для регулирования источника постоянного напряжения. Он позволяет поддерживать постоянное значение выходного напряжения независимо от изменений входного напряжения и нагрузки.

Основным принципом работы стабилитрона является явление пробоя – прохождение тока через полупроводниковый материал при достижении определенного напряжения. Этот процесс осуществляется благодаря зарядам, расположенным на поверхности полупроводника, и создает высокое внутреннее сопротивление, что позволяет поддерживать постоянное значение напряжения.

Стабилитроны широко применяются в электронике и электротехнике в качестве стабилизаторов напряжения. Их можно найти во множестве устройств, таких как источники питания, блоки питания для компьютеров, зарядные устройства и другие электронные устройства, требующие постоянного и стабильного напряжения.

Преимуществом использования стабилитронов в электронных схемах является низкое энергопотребление и компактность. Благодаря этим свойствам стабилитроны широко применяются в мобильных устройствах, таких как смартфоны и планшеты, где важна компактность и низкий уровень энергопотребления.

В электронике стабилитроны также используются для защиты от перенапряжений. При подаче слишком высокого напряжения на схему стабилитрон срабатывает и предотвращает повреждение устройства.

Для правильного выбора стабилитрона важно учитывать требования по напряжению и току, а также его сопротивление и мощность. Различные модели стабилитронов могут иметь разные характеристики, поэтому необходимо подобрать подходящий для конкретных условий применения

2.3. Стабилитроны и стабисторы

Стабилитроном называется полупроводниковый диод, на обратной ветви ВАХ которого имеется участок с сильной зависимостью тока от напряжения (рисунок 2.2), т.е. с большим значением крутизны D I/D U (D I= Icт max — Iст min). Если такой участок соответствует прямой ветви ВАХ, то прибор называется стабистором.

Стабилитроны используются для создания стабилизаторов напряжения.

Напряжение стабилизации Uст равно напряжению электрического (лавинного) пробоя p-n перехода при некотором заданном токе стабилизации Iст (рисунок ). Стабилизирующие свойства характеризуются дифференциальным сопротивлением стабилитрона rд = D U/D I, которое должно быть возможно меньше.

К параметрам стабилитрона относятся: напряжение стабилизации U, минимальный и максимальный токи стабилизации Iст min Iст max.

Промышленностью выпускаются стабилитроны с параметрами: U от 1,5 до 180 В, токи стабилизации от 0,5 мА до 1,4 А.

Выпускаются также двуханодные стабилитроны, служащие для стабилизации разнополярных напряжений и представляющие собой встречно включенные p-n переходы.

Рисунок 2.2

Общие рекомендации

MAX40200 – это идеальный диодный токовый переключатель с настолько малым падением напряжения прямого смещения на полупроводниковом переходе, что оно почти на порядок меньше, чем у диодов Шоттки. В MAX40200 реализована защита самой ИС и подключенных к выходу цепей от превышения температуры. В отключенном состоянии (на выводе EN установлен низкий уровень) ИС блокирует прямое и обратное напряжения до 6 В, что делает ее пригодной для большинства низковольтных портативных электронных устройств. При обратном смещении диодного перехода MAX40200 ток утечки меньше, чем у многих сопоставимых диодов Шоттки. MAX40200 работает с напряжением питания 1,5…5,5 В.

Идеальный интегральный диод MAX40200 имеет целый ряд преимуществ, среди которых:

  • незначительный ток в дежурном режиме – 7 мкА;
  • малая рассеиваемая мощность – всего 125 мкА при токе 1 А;
  • небольшое падение напряжения (примерно 18 мВ) для прямого тока – до 100 мА;
  • время переключения между прямым и обратным напряжением смещения – менее 100 мкс;
  • компактный корпус типа WLP с четырьмя выводами;
  • отпирающий/запирающий сигнал и тепловая защита.

Одной из важных особенностей ИС MAX40200, применяемой в качестве идеальных диодов, является использование MOSFET вместо обычной биполярной полупроводникой технологии, что позволяет, по сути, обеспечить для нагрузки гальваническую развязку по току. В данной статье исследуются характеристики нескольких параллельно соединенных ИС MAX40200.

Комплект из нескольких идеальных диодов должен обеспечивать те же характеристики, что и один более мощный диод. Для этого необходимо подобрать некоторое количество MAX40200. Например, можно использовать две параллельно соединенных ИС для системы на 2 А и, соответственно, четыре параллельных ИС для системы на 4 А.

Увеличение мощности параметрического стабилизатора

Максимальная выходная мощность простейшего параметрического стабилизатора напряжения зависит от значений Iст.max и Pmax стабилитрона. Мощность параметрического стабилизатора может быть увеличена, если в качестве регулирующего компонента использовать транзистор, который будет выступать в качестве усилителя постоянного тока.

Параллельный стабилизатор

Схема ПСН с параллельным включением транзистора

Схема представляет собой эмиттерный повторитель, параллельно транзистору VT включено сопротивление нагрузки RH. Балластный резистор R1 может быть включён как в коллекторную, так ив эмиттерную цепи транзистора. Напряжение на нагрузке равно

Схема работает следующим образом. При увеличении тока через резистор RH, а соответственно и напряжения (U1 = UCT) на выходе стабилизатора, происходит увеличение напряжения база-эмиттер (UEB) и коллекторного тока IK, так как транзистор работает в области усиления. Возрастание коллекторного тока приводит к увеличению падения напряжения на балластном резисторе R1, что компенсирует рост напряжения на выходе стабилизатора (U1 = UCT). Поскольку ток IСТ стабилитрона является одновременно базовым током транзистора, очевидно, что ток нагрузки в этой схеме может быть в h21e раз больше, чем в простейшей схеме параметрического стабилизатора. Резистор R2 увеличивает ток через стабилитрон, обеспечивая его устойчивую работу при максимальном значении коэффициента h21e, минимальном напряжении питания U0 и максимальном токе нагрузки IН.

Условно графическое обозначение на схемах

Все приборы имеют графическое обозначение. Это необходимо, чтобы не загромождать электрическую схему. Стабилитрон имеет свое условно-графическое обозначение, которое утверждено межгосударственным стандартом единого стандарта конструкторской документации (ЕСКД).

На рисунке снизу представлено как обозначается на схеме по ГОСТ 2.730-73, стабилитрон обозначается практически как диод, так как, в сущности, является одной из его разновидностей.

Для правильного включения следует различать, где плюс, где минус. Если смотреть на приведенный выше рисунок, то на нем плюс (анод) расположен слева, а минус (катод) справа. Согласно ЕСКД размеры УГО диодов должны составлять 5/5 мм. Это иллюстрирует рисунок снизу.

Конструктивно стабилитрон подобен обычным плоскостным кремниевым диодам.

Основная особенность стабилитрона состоит в том, что он специально предназначен для работы при обратных напряжениях, превышающих напряжение пробоя p-n перехода. Такой режим работы становится возможным, если принять меры для предотвращения перегрева p-n перехода обратным током (усилить теплоотвод от перехода, ограничить величину обратного тока внешним сопротивлением).

Стабилитрон изготавливается на основе p — n перехода, процессы в котором основываются на явлениях туннельного или лавинного пробоев p — n перехода, и который содержит на обратной ветви ВАХ участок с малым сопротивлением при определённом напряжении — это напряжение и будет напряжением стабилизации

Другим механизмом работы стабилитрона является туннельный пробой.

Вольтамперная характеристика стабилитрона представлена на рис. .

Стабилитрон изготавливают, как правило, на основе слаболегированного кремния.

При малых напряжениях стабилизации

На основе p — n перехода, процессы в котором основываются на явлениях туннельного и лавинного пробоев p — n перехода, и который содержит на обратной ветви ВАХ участок с малым сопротивлением при определённом напряжении √ это напряжение стабилизации.

Стабилитрон изготавливают, как правило, на основе слаболегированного кремния.

При этом в p — n переходе образуется большое ускоряющее поле для неосновных носителей заряда и при обратном направлении порядка неосновных носители ускоряются в поле p — n перехода ионизируют атомы основного вещества, которые в свою очередь ускоряются в этом же поле и ионизируют другие атомы . При этом количество подвижных носителей резко (лавинообразно) возрастает и ток через p — n переход в обратном направлении резко возрастает.

И он ограничивается только внешними элементами электрической цепи.

При этом напряжение на стабилитроне практически не меняется.

При малых напряжениях стабилизации

Схема включения стабилитрона.

Параметрический стабилизатор при обратном включении.

Используется стабилитрон при обратном включении.

R б — балластное сопротивление,

Rн — сопротивление нагрузки, на котором выделяется стабильное напряжение

Конструктивно стабилитрон подобен обычным плоскостным кремниевым диодам.

Основная особенность стабилитрона состоит в том, что он специально предназначен для работы при обратных напряжениях, превышающих напряжение пробоя p-n перехода. Такой режим работы становится возможным, если принять меры для предотвращения перегрева p-n перехода обратным током (усилить теплоотвод от перехода, ограничить величину обратного тока внешним сопротивлением).

Как проверить стабилитрон

Как же проверить стабилитрон? Да также как и диод! А как проверить диод, можно посмотреть в этой статье. Давайте же проверим наш стабилитрон. Ставим мультиметр на прозвонку и цепляемся красным щупом к аноду, а черным к катоду. Мультиметр должен показать падение напряжения прямого PN-перехода.

Меняем щупы местами и видим единичку. Это значит, что наш стабилитрон в полной боевой готовности.

Ну что же, настало время опытов. В схемах стабилитрон включается последовательно с резистором:

где Uвх – входное напряжение, Uвых.ст. – выходное стабилизированное напряжение

Если внимательно глянуть на схему, мы получили ни что иное, как Делитель напряжения. Здесь все элементарно и просто:

Uвх=Uвых.стаб +Uрезистора

Или словами: входное напряжение равняется сумме напряжений на стабилитроне и на резисторе.

Эта схема называется параметрический стабилизатор на одном стабилитроне. Расчет этого стабилизатора выходит за рамки данной статьи, но кому интересно, в гугл

Итак, собираем схемку. Мы взяли резистор номиналом в 1,5 Килоом и стабилитрон на напряжение стабилизации 5,1 Вольта. Слева цепляем блок питания, а справа замеряем мультиметром полученное напряжение:

Теперь внимательно следим за показаниями мультиметра и блока питания:

Так, пока все понятно, еще добавляем напряжение… Опа на! Входное напряжение у нас 5,5 Вольт, а выходное 5,13 Вольт! Так как напряжение стабилизации стабилитрона 5,1 Вольт, то как мы видим, он прекрасно стабилизирует.

Давайте еще добавим вольты. Входное напряжение 9 Вольт, а на стабилитроне 5,17 Вольт! Изумительно!

Еще добавляем… Входное напряжение 20 Вольт, а на выходе как ни в чем не бывало 5,2 Вольта! 0,1 Вольт – это ну очень маленькая погрешность, ей можно даже в некоторых случаях пренебречь.

Напряжение стабилитрона

Необходимое напряжение стабилитрона — это то напряжение, при котором происходит пробой. В процессе изготовления стабилитрона, к основным исходным материалам добавляют определенное количество других материалов, присадок, так что во время работы данного прибора пробой происходит при совершенно конкретном значении напряжения.

Если подаваемое на стабилитрон напряжение превышает установленное для него напряжение пробоя на достаточно большую величину, то тепло, которое сопровождает прохождение через стабилитрон чрезмерного тока, может вызывать серьезные повреждения. Для того, чтобы предотвратить подобные неприятности, цепи со стабилитроном обычно имеют установленный последовательно резистор, который должен ограничивать величину тока, протекающего через стабилитрон. Если выбрано правильное значение сопротивления, то ток в цепи не будет превышать максимальное значение тока для стабилитрона.

Если же подаваемое напряжение меньше, того, на которое рассчитан стабилитрон, то сопротивление протеканию тока будет значительным и этот диод будет оставаться в основном в разомкнутом состоянии, однако, когда подаваемое напряжение станет равно или превысит расчетное напряжение стабилитрона, то сопротивление тока окажется преодоленным, и ток потечет через стабилитрон и по цепи.

При различных значениях напряжения выше напряжения стабилитрона, изменение внутреннего сопротивления возникает в результате изменений обедненной области прибора. В результате этого падение напряжения на стабилитроне будет относительно постоянным. Падение напряжения должно поддерживаться на уровне, близком к значению напряжения стабилитрона. Остальное напряжение источника электропитания понижается на последовательно подключенном резисторе.

Поскольку напряжение на стабилитроне значительно превышает напряжения стабилитрона, то цепь, которую мы только что описали, может быть использована для обеспечения подачи регулируемого напряжения на нагрузку. Если нагрузка включена параллельно со стабилитроном, то падение напряжение на нагрузке будет равно падению напряжения на стабилитроне.

Само название этого прибора “стабилитрон” созвучно слову стабильность или постоянство чего — либо или в чем — либо. В жизни человека очень важна стабильность, стабильность в зарплате, цены в магазине и прочее. В электронике стабильность напряжения питания очень важный, основной параметр, который при настройке или ремонте электронного оборудования проверяют в первую очередь. Напряжение в электрической сети может меняться в зависимости от общей нагрузки, качества электроснабжающих сетей, и еще многих других факторов, но напряжение питания электронных устройств, при этом, должно оставаться неизменным с определенной заданной величиной.

И так, что же такое стабилитрон.

Википедия, тебе даст такое определение:

«Полупроводнико́вый стабилитро́н, или диод Зенера — это полупроводниковый диод, работающий при обратном смещении в режиме пробоя. До наступления пробоя через стабилитрон протекают незначительные токи утечки…»

Все правильно, но слишком заумно.

Я попробую сказать проще

Стабилитрон — это такой полупроводниковый прибор, который стабилизирует напряжение.

Считаю, что на первых порах этого определения достаточно, (а как он стабилизирует напряжение, я расскажу ниже)

Мощность рассеивания стабилитрона

Мощность рассеивания стабилитрона Pст характеризует его способность не перегреваться выше определенной температуры на протяжении длительного времени. Чем выше значение Pст, тем больше тепла способен рассеять полупроводниковый прибор. Мощность рассеивания рассчитывается для самых неблагоприятных условий работы прибора, поэтому в ниже приведенную формулу подставляют максимально возможное в работе Uвх и наименьшие значения Rб и Iн:

Существует ряд стандартных номиналом по данному параметру: 0,3 Вт, 0,5 Вт, 1,3 Вт, 5 Вт и т.п. Чем больше Pст, тем больше габариты полупроводникового прибора.

Стабилитрон

Стабилитрон — полупроводниковый диод, предназначенный для стабилизации напряжения.

Рис. 6.8 Условное графическое обозначение

В качестве материала для полупроводниковых стабилитронов ис­пользуется, как правило, кремний, обладающий высокой температурной стабильностью.

Рис. 6.9 ВАХ стабилитрона

В прямом включении ВАХстабилитрона практически не отличается от прямой ветви любого кремниевого диода.

Обратная ветвь ВАХимеет вид прямой вертикальной линии, проходящей поч­ти параллельно оси токов.

Нормальным режимом работы стабилитрона являет­ся работа при обратном напряжении на участке электрического пробоя р-n перехода.

По сравнению с обычными диодами стабилитрон имеет достаточно низкое напряжение пробоя (при обратном включении) и может поддерживать это напряжение на постоянном уровне при значительном изменении силы обратного тока.

Полупроводниковый материал стабилитронов, имеют высокую концентрацию легирующих примесей (узкий переход). Поэтому, при относительно небольших обратных напряжениях в переходе возникает сильное электрическое поле, вызывающее его электрический пробой, в данном случае являющийся обратимым (если не наступает тепловой пробой вследствие нарушения теплового баланса).

В основе работы стабилитрона лежат два механизма:

— лавинный пробой (пробой Аваланчи, avalanche breakdown) обычно развивается в достаточно широких p-n-переходах. Напряжение стабилизации > 5-6В.

— туннельный пробой (пробой Зенера, Zener, в англоязычной литературе, диод Зенера),

развивается в тонких р-nпереходах при большой напряженности электрического поля. Напряжение стабилизации < 5В.

Они присутствуют в любом стабилитроне совместно, но преобладает только один из них.

При изменении в широких пределах тока через прибор паде­ние напряжения на нем практически не изменяется. Это свойство кремниевых стабилитронов и позволяет использовать их в качестве стабилизатора напряжения.

Для того, чтобы предотвратить тепловой пробой в конструкции стабилитрона пре­дусмотрен отвод тепла от р-n перехода.

Пример:Схема включения стабилитрона (параметрический стабилизатор)

Простейшая схема стабилизации постоянного напряжения – рис. 6.10

Выходное напряжение стабилизатора должно оставаться постоянным при изменении выходного напряжения или изменения сопротивления нагрузки.

Рис. 6.10Параметрический стабилизатор

Выходное напряжение стабилизатора не может быть абсолютно стабильным. Приращения Ucm

малы, и зависят от приращений входного напряжения U вх .

U вх = U cm+ IR0R0 , (6.2)

где rq

токоограничивающий резистор.

IR0 = (Uвх — Ucm)/ R0,

(6.3)

При увеличении входного напряжения Uвх+ Uвх

I’R0 = (Uвх+ Uвх — Ucm)/ R0 (6.4)

При этом I’R0 > IR0 и I’cm > Icm ток через стабилитрон увеличивается.

Параметром, определяющим качество стабилизатора является коэффициент стабилизации.

Коэффициент стабилизации определяется следующим образом:

(при этом 1Н считается постоянным)

(6.5)

Напряжение стабилитрона

Необходимое напряжение стабилитрона — это то напряжение, при котором происходит пробой. В процессе изготовления стабилитрона, к основным исходным материалам добавляют определенное количество других материалов, присадок, так что во время работы данного прибора пробой происходит при совершенно конкретном значении напряжения.

Если подаваемое на стабилитрон напряжение превышает установленное для него напряжение пробоя на достаточно большую величину, то тепло, которое сопровождает прохождение через стабилитрон чрезмерного тока, может вызывать серьезные повреждения. Для того, чтобы предотвратить подобные неприятности, цепи со стабилитроном обычно имеют установленный последовательно резистор, который должен ограничивать величину тока, протекающего через стабилитрон. Если выбрано правильное значение сопротивления, то ток в цепи не будет превышать максимальное значение тока для стабилитрона.

Если же подаваемое напряжение меньше, того, на которое рассчитан стабилитрон, то сопротивление протеканию тока будет значительным и этот диод будет оставаться в основном в разомкнутом состоянии, однако, когда подаваемое напряжение станет равно или превысит расчетное напряжение стабилитрона, то сопротивление тока окажется преодоленным, и ток потечет через стабилитрон и по цепи.

При различных значениях напряжения выше напряжения стабилитрона, изменение внутреннего сопротивления возникает в результате изменений обедненной области прибора. В результате этого падение напряжения на стабилитроне будет относительно постоянным. Падение напряжения должно поддерживаться на уровне, близком к значению напряжения стабилитрона. Остальное напряжение источника электропитания понижается на последовательно подключенном резисторе.

Поскольку напряжение на стабилитроне значительно превышает напряжения стабилитрона, то цепь, которую мы только что описали, может быть использована для обеспечения подачи регулируемого напряжения на нагрузку. Если нагрузка включена параллельно со стабилитроном, то падение напряжение на нагрузке будет равно падению напряжения на стабилитроне.

Само название этого прибора “стабилитрон” созвучно слову стабильность или постоянство чего — либо или в чем — либо. В жизни человека очень важна стабильность, стабильность в зарплате, цены в магазине и прочее. В электронике стабильность напряжения питания очень важный, основной параметр, который при настройке или ремонте электронного оборудования проверяют в первую очередь. Напряжение в электрической сети может меняться в зависимости от общей нагрузки, качества электроснабжающих сетей, и еще многих других факторов, но напряжение питания электронных устройств, при этом, должно оставаться неизменным с определенной заданной величиной.

И так, что же такое стабилитрон.

Википедия, тебе даст такое определение:

«Полупроводнико́вый стабилитро́н, или диод Зенера — это полупроводниковый диод, работающий при обратном смещении в режиме пробоя. До наступления пробоя через стабилитрон протекают незначительные токи утечки…»

Все правильно, но слишком заумно.

Я попробую сказать проще

Стабилитрон — это такой полупроводниковый прибор, который стабилизирует напряжение.

Считаю, что на первых порах этого определения достаточно, (а как он стабилизирует напряжение, я расскажу ниже)

Параметры стабилитрона

Какие параметры характеризуют стабилитрон? Базовые параметры — это напряжение стабилизации, минимальный ток стабилизации и мощность рассеяния.

Напряжение стабилизации Uст (в зарубежной литературе Uz, zener voltage) — это, грубо говоря, рабочее напряжение стабилитрона. А если по умному, то это напряжение на стабилитроне при прохождении заданного тока стабилизации.

Как правило, стабилитроны одного типа имеют небольшой разброс напряжения стабилизации, поэтому в документации указывается минимальное, номинальное и максимальное напряжение стабилизации при заданной температуре и токе.

Минимальный ток стабилизации Iст мин (Iz) — величина тока, при которой стабилитрон «выходит» на свой рабочий участок вольтамперной характеристики. По сути, это точка с которой начинается «излом» характеристики.

Мощность рассеяния стабилитрона P — параметр определяющий максимально допустимый ток стабилитрона. Если принять, что напряжение на стабилитроне в рабочем режиме не меняется, то максимальный ток можно вычислить как P/Uст. Также можно прикинуть максимальный ток в прямом направлении P/Uf = P / 0,7. Мощность рассеяния стабилитрона зависит от его конструкции корпуса (и площади p-n перехода). Обычно этот параметр указывается в разделе «absolute maximum ratings».

Вольт-амперная характеристика стабилитрона

Вольт-амперная характеристика (ВАХ) стабилитрона аналогично ВАХ диода и имеет две ветви: прямую и обратную. Прямая ветвь является рабочей для диода, а обратная ветвь характеризует работу стабилитрона, поэтому он включается в электрическую цепь в обратном направлении (катодом к плюсу, а анодом к минусу) по сравнению с диодом. Поэтому стабилитрон называю опорным диодом, а источник питания с данным полупроводниковым элементом называют опорным источником напряжения. Такой терминологий будем пользоваться и мы.

На обратной ветви вольт-амперной характеристик опорного диода выделим две характерные точки 1 и 3. Точка 1 отвечает минимальному значению тока стабилизации, который находится в пределах единиц миллиампер. Если ток, протекающий через стабилитрон, будет ниже точки 1, то он не сможет выполнять свои функции (не откроется). В случае превышения тока выше точки 3 опорный диод перегреется и выйдет из строя. Поэтому оптимальной точкой в большинстве случае будет точка посредине обратной ветви ВАХ, то есть точка 2. Тогда при изменении тока в широких пределах (смотрите ось Y) точка 2 будет изменять свое положение, перемещаясь вверх или вниз по обратной ветви, а напряжение будет изменяться незначительно (смотрите ось X).

Стабилитрон как преобразователь напряжения

Сдвигатель (преобразователь) напряжения — одно из самых простых, но интересных применений стабилитрона. Если у вас был опыт подключения датчика 3,3 В к микроконтроллеру 5 В, и вы своими глазами видели ошибки в показаниях и т

д., которые могут к ним привести, вы оцените важность переключателей напряжения. Сдвигатели напряжения помогают преобразовывать сигнал из одного напряжения в другое, а способность стабилитрона поддерживать стабильное выходное напряжение в зоне пробоя делает их идеальным компонентом для работы

В переключателе напряжения на основе стабилитрона схема понижает выходное напряжение на величину, равную напряжению пробоя конкретного используемого стабилитрона. Принципиальная схема подобного переключателя напряжения показана на следующем рисунке.

Рассмотрим эксперимент на рисунке ниже.

Схема демонстрирует преобразователь напряжения на основе стабилитрона 3,3 В. Выходное напряжение (3,72 В) схемы получается путем вычитания напряжения пробоя (3,3 В) стабилитрона из входного напряжения (7 В).

Vout = Vin –Vz

Vout = 7 – 3.3 = 3.7v

Рассмотренный переключатель (преобразователь) напряжения, имеет несколько применений в современном проектировании электронных схем, поскольку инженеру-конструктору, возможно, придется одновременно работать с тремя различными уровнями напряжения в процессе проектирования.

Подробно о цветовой маркировке стабилизирующего диода

Маркировка стабилитрона

Любой диод (стабилитрон и т.д.) на своем корпусе содержит специальную маркировку, которая отражает то, какой материал использовался для изготовления каждого конкретного полупроводника. Такая маркировка может иметь следующий вид:

  • буква или цифра;
  • буква.

Кроме этого маркировка отражает электрические свойства и назначение прибора. Обычно за это отвечает цифра. Буква, в свою очередь, отражает соответствующую разновидность устройства. Кроме этого маркировка содержит дату изготовления и условное обозначение изделия. Смд интегрального типа часто содержат полную маркировку. В такой ситуации на корпусе изделия имеется условный код, который обозначает тип микросхемы. Пример расшифровки нанесенной на корпус кодовой маркировки для микросхем приведен на рисунке:

Пример маркировки микросхем

Кроме этого имеется еще и цветовая маркировка. Она существует в нескольких вариантах, но наиболее часто используется японская маркировка (JIS-C-7012). Обозначения цветовой маркировки приведены в следующей таблице.

Стабилитрон как ограничитель формы сигнала.

Одно из применений обычных диодов заключается в применении схем ограничения и ограничения, которые представляют собой схемы, которые используются для формирования или изменения формы или сигнала входного переменного тока, создавая выходной сигнал другой формы в зависимости от технических характеристик ограничителя или фиксатора.

Схемы ограничителей обычно представляют собой схемы, которые используются для предотвращения выхода выходного сигнала схемы за пределы заданного значения напряжения без изменения какой-либо другой части входного сигнала или формы волны.

Эти схемы вместе с фиксаторами широко используются в аналоговых телевизионных и FM-радиопередатчиках для устранения помех (схемы ограничения ) и ограничения шумовых пиков путем ограничения высоких пиков.

Поскольку стабилитроны обычно ведут себя как обычные диоды, когда приложенное напряжение не равно напряжению пробоя, они также используются в схемах ограничения.

Схемы ограничения могут быть разработаны для ограничения сигнала в положительной, отрицательной или обеих областях. Хотя диод, естественно, отсекает другую область при 0,7 В, независимо от того, был ли он разработан как положительный или отрицательный.

Например, рассмотрим схему ниже.

Схема ограничителя предназначена для ограничения выходного сигнала на уровне 6,2 В, поэтому использовался стабилитрон на 6,2 В. Стабилитрон предотвращает выход выходного сигнала за пределы напряжения стабилитрона независимо от формы входного сигнала. В этом конкретном примере использовалось входное напряжение 20 В, а выходное напряжение при положительном размахе составляло 6,2 В, что соответствовало напряжению стабилитрона. Однако во время отрицательного колебания напряжения переменного тока стабилитрон ведет себя так же, как обычный диод, и ограничивает выходное напряжение на уровне 0,7 В, как и обычные силиконовые диоды.

Чтобы реализовать схему ограничения для отрицательного размаха цепи переменного тока, а также для положительного размаха таким образом, чтобы напряжение ограничивалось на разных уровнях при положительном и отрицательном размахе, используется схема ограничения с двойным стабилитроном. Принципиальная схема схемы ограничения двойного стабилитрона показана ниже.

В приведенной выше схеме ограничения напряжение Vz2 представляет собой напряжение на отрицательном размахе источника переменного тока, при котором выходной сигнал желательно ограничить, а напряжение Vz1 представляет собой напряжение на положительном размахе источника переменного тока, при котором выходное напряжение желательно обрезать.

Стабилитрон в медицине и научных исследованиях

Стабилитрон – это полупроводниковый элемент, который используется для стабилизации напряжения. Но помимо своего основного применения в электронике, стабилитрон также находит применение в медицине и научных исследованиях.

Медицина

  • В медицине стабилитроны применяются для контроля и стабилизации сигналов в медицинских приборах. Они играют важную роль в работе электрокардиографов, электроэнцефалографов, электромиографов и других устройств, используемых в диагностике и лечении различных заболеваний.
  • Стабилитроны также применяются для создания стабильного напряжения в медицинских источниках питания, которые используются в хирургических операциях и других медицинских процедурах.
  • В дозиметрах и радиационных измерительных приборах стабилитроны используются для стабилизации радиационных потоков и обеспечения точных измерений.

Научные исследования

  • В научных исследованиях стабилитроны применяются для создания стабильного напряжения, необходимого для работы приборов и экспериментов в различных областях науки. Например, в физике и химии стабилитроны используются для точного контроля и измерения электрических параметров.
  • Стабилитроны также могут использоваться в научных исследованиях, связанных с исследованием различных материалов и структур. Они могут быть частью сложных систем для стабилизации интенсивности света или других оптических параметров.
  • В радиоэлектронике и телекоммуникациях стабилитроны применяются для создания стабильного напряжения, используемого в радиопередатчиках, радиоприемниках и других устройствах связи.

Таким образом, стабилитроны играют важную роль в медицине и научных исследованиях, обеспечивая стабильное и контролируемое напряжение, необходимое для работы различных приборов и систем.

Немного теории

Стабильная зарплата, стабильная жизнь, стабильное государство. Последнее не про Россию, конечно :-). Если глянуть в толковый словарик, то можно толково разобрать, что же такое «стабильность». На первых строчках Яндекс мне сразу выдал обозначение этого слова: стабильный — это значит постоянный, устойчивый, не изменяющийся. Но чаще всего этот термин используется именно в электронике и электротехнике. В электронике очень важны постоянные значения какого-либо параметра. Это может быть сила тока, напряжение, частота сигнала и другие его характеристики. Отклонение сигнала от какого-либо заданного параметра может привести к неправильной работе радиоэлектронной аппаратуры и даже к ее поломке

Поэтому, в электронике очень важно, чтобы все стабильно работало и не давало сбоев

В электронике и электротехнике стабилизируют напряжение. От значения напряжения зависит работа радиоэлектронной аппаратуры. Если оно изменится в меньшую, или даже еще хуже, в большую сторону, то аппаратура в первом случае может неправильно работать, а во втором случае и вовсе колыхнуть ярким пламенем.

Для того, чтобы не допустить взлетов и падения напряжения, были изобретены различные стабилизаторы напряжения. Как вы поняли из словосочетания, они используются чтобы стабилизировать «играющее» напряжение.

Встречное, параллельное, последовательное соединение стабилитронов

Для повышения напряжения стабилизации можно последовательно соединять два и более стабилитрона. Например на нагрузке нужно получить 17 В, тогда, в случае отсутствия нужного номинала, применяют опорные диоды на 5,1 В и на 12 В.

Параллельное соединение применяется с целью повышения тока и мощности.

Также стабилитроны находят применение для стабилизации переменного напряжения. В этом случае они соединяются последовательно и встречно.

В один полупериод переменного напряжения работает один стабилитрон, а второй работает как обычный диод. Во второй полупериод полупроводниковые элементы выполняют противоположные функции. Однако в таком случае форма выходного напряжения будет отличается от входного и выглядит как трапеция. За счет того, что опорный диод будет отсекать напряжение, превышающее уровень стабилизации, верхушки синусоиды будут срезаться.

Заключение

Пожалуй, на сегодня достаточно. Я коснулся, упрощенно, очень небольшой части касающихся использования стабилитронов вопросов. Той части, которая
наиболее важна для новичков и в части практического использования, и для понимания работы стабилитронов. Остались в стороне вопросы частотных свойств,
емкости, временной стабильности. Остались в стороне интересные варианты схем включении. Например, когда выходным напряжением является не напряжение
на стабилитроне, а напряжение на балластном резисторе. Остались в стороне не стандартные варианты использования стабилитронов. Например, в качестве
варикапов для настройки колебательных контуров приемников.

Стабилитрон это простой и дешевый электронный прибор, который имеет массу разных применений. Но за этой простотой скрывается не мало тонкостей,
которые нужно учитывать.

Вы можете обсудить данную статью или задать вопросы автору на форуме

Понравилась статья? Поделиться с друзьями:
Журнал «Наш дворик»
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: