Расчет сети на потери напряжения

Допустимое отклонение напряжения для сети 10 кв

Причины падения напряжения

Каждому электромеханику известно, что кабель состоит из проводников — на практике используются жилы с медными или алюминиевыми сердечниками, обмотанные изоляционным материалом. Провод помещен в герметичную полимерную оболочку — диэлектрический корпус.

Поскольку металлические проводники расположены в кабеле слишком плотно, дополнительно прижаты слоями изоляции, при большой протяженности электромагистрали металлические сердечники начинают работать по принципу конденсатора, создающего заряд с емкостным сопротивлением.

Падение напряжения происходит по следующей схеме:

  1. Проводник, по которому пущен ток, перегревается и создает емкостное сопротивление как часть реактивного сопротивления.
  2. Под воздействием преобразований, протекающих на обмотках трансформаторов, реакторах, прочих элементах цепи, мощность электроэнергии становится индуктивной.
  3. В результате резистивное сопротивление металлических жил преобразуется в активное сопротивление каждой фазы электрической цепи.
  4. Кабель подключают на токовую нагрузку с полным (комплексным) сопротивлением по каждой токоведущей жиле.
  5. При эксплуатации кабеля по трехфазной схеме три линии тока в трех фазах будут симметричными, а нейтральная жила пропускает ток, приближенный к нулю.
  6. Комплексное сопротивление проводников приводит к потерям напряжения в кабеле при прохождении тока с векторным отклонением за счет реактивной составляющей.

Графически схему падения напряжения можно представить следующим образом: из одной точки выходит прямая горизонтальная линия — вектор силы тока. Из этой же точки выходит под углом к силе тока вектор входного значения напряжения U1 и вектор выходного напряжения U2 под меньшим углом. Тогда падение напряжения по линии равно геометрической разнице векторов U1 и U2.

Рисунок 1. Графическое изображение падения напряжения

На представленном рисунке прямоугольный треугольник ABC отражает падение и потери напряжения на линии кабеля большой длины. Отрезок AB — гипотенуза прямоугольного треугольника и одновременно падение, катеты AC и BC показывают падение напряжения с учетом активного и реактивного сопротивления, а отрезок AD демонстрирует величину потерь.

Производить подобные расчеты вручную довольно сложно. График служит для наглядного представления процессов, протекающих в электрической цепи большой протяженности при прохождении тока заданной нагрузки.

Как измерить потери напряжения

Использование мультиметра

Для измерения потерь напряжения в электрической цепи может использоваться мультиметр. Мультиметр — это универсальный измерительный прибор, который позволяет измерять различные параметры электрических цепей, включая напряжение.

Для измерения потерь напряжения с помощью мультиметра необходимо выполнить следующие действия:

  1. Подготовить мультиметр, включив его и выбрав режим измерения напряжения (обычно обозначается символом «V» на селекторе режимов).
  2. Подключить мультиметр к электрической цепи, в которой нужно измерить потери напряжения. Для этого необходимо подключить провода мультиметра к точкам цепи, между которыми нужно измерить напряжение.
  3. Снять показания мультиметра и записать результаты измерений.
  4. Повторить измерения в различных точках электрической цепи, чтобы определить участки, на которых происходят потери напряжения.

Полученные результаты могут использоваться для определения причины потерь напряжения и для принятия мер по их снижению. Если потери напряжения слишком большие, то может потребоваться изменение параметров электрической цепи, например, увеличение сечения проводов или использование более эффективных элементов цепи (например, трансформаторов с меньшим сопротивлением).

Измерение с помощью осциллографа

Для измерения потерь напряжения в электрической цепи можно также использовать осциллограф. Осциллограф — это измерительный прибор, который позволяет наблюдать изменение напряжения во времени в виде графика.

Для измерения потерь напряжения с помощью осциллографа необходимо выполнить следующие действия:

  1. Подготовить осциллограф, включив его и выбрав режим измерения напряжения.
  2. Подключить осциллограф к электрической цепи, в которой нужно измерить потери напряжения. Для этого необходимо подключить один канал осциллографа к точке цепи, в которой измеряется напряжение, а другой канал — к точке с известным напряжением (например, к источнику питания).
  3. Запустить измерения и наблюдать изменение напряжения во времени на экране осциллографа.
  4. По графику на экране осциллографа можно определить потери напряжения на участке электрической цепи, между точками подключения осциллографа. Для этого необходимо измерить амплитуду сигнала на обоих каналах осциллографа и вычислить разницу между ними.

Полученные результаты могут использоваться для определения причин потерь напряжения и для принятия мер по их снижению. Если потери напряжения слишком большие, то может потребоваться изменение параметров электрической цепи, например, увеличение сечения проводов или использование более эффективных элементов цепи (например, трансформаторов с меньшим сопротивлением).

Использование специальных приборов

Для измерения потерь напряжения в электрических цепях могут быть использованы специализированные приборы, такие как:

  1. Импульсный рефлектометр — это прибор, который позволяет измерить потери напряжения на участке кабеля или провода. Он работает на основе принципа измерения времени прохождения импульса по кабелю и его отражения от конца кабеля. По времени задержки между импульсом и его отражением можно определить длину кабеля и потери напряжения на нем.
  2. Векторный анализатор — это прибор, который позволяет измерить коэффициент отражения и передачи на участке кабеля или провода. Он работает на основе принципа измерения фазовых и амплитудных характеристик сигнала на входе и выходе участка кабеля.
  3. Тестеры кабелей — это приборы, которые позволяют проверить правильность подключения и целостность кабеля. Они могут использоваться для измерения потерь напряжения на участке кабеля и для диагностики неисправностей в кабельной линии.
  4. Измерители мощности — это приборы, которые позволяют измерять мощность, потребляемую устройством или группой устройств. Они могут использоваться для измерения потерь напряжения в цепи и определения эффективности работы устройств.

Использование специализированных приборов может обеспечить более точные и надежные измерения потерь напряжения в электрических цепях. Однако, такие приборы могут быть дорогими и требовать специальных знаний и навыков для их использования.

Нормативные ссылки:

ПУЭ 7-го издания.
Уровни и регулирование напряжения, компенсация реактивной мощности.

1.2.22. Для электрических сетей следует предусматривать технические мероприятия по обеспечению качества электрической энергии в соответствии с требованиями ГОСТ 13109.

1.2.23. Устройства регулирования напряжения должны обеспечивать поддержание напряжения на шинах напряжением 3-20 кВ электростанций и подстанций, к которым присоединены распределительные сети, в пределах не ниже 105 % номинального в период наибольших нагрузок и не выше 100% номинального в период наименьших нагрузок этих сетей. Отклонения от указанных уровней напряжения должны быть обоснованы.

1.2.24. Выбор и размещение устройств компенсации реактивной мощности в электрических сетях производятся исходя из необходимости обеспечения требуемой пропускной способности сети в нормальных и послеаварийных режимах при поддержании необходимых уровней напряжения и запасов устойчивости.

Отклонение напряжения характеризуется показателем установившегося отклонения напряжения, для которого установлены следующие нормы: 

  • нормально допустимые и предельно допустимые значения установившегося отклонения напряжения δUу на выводах приемников электрической энергии равны соответственно ± 5 и ± 10% от номинального напряжения электрической сети по ГОСТ 721 и ГОСТ 21128 (номинальное напряжение);
  • нормально допустимые и предельно допустимые значения установившегося отклонения напряжения в точках общего присоединения потребителей электрической энергии к электрическим сетям напряжением 0,38 кВ и более должны быть установлены в договорах на пользование электрической энергией между энергоснабжающей организацией и потребителем с учетом необходимости выполнения норм настоящего стандарта на выводах приемников электрической энергии.

РД 34.20.185-94
Инструкция по проектированию городских электрических сетей.
Гл. 5.2 Уровни и регулирование напряжения, компенсация реактивной мощности

5.2.4. Предварительный выбор сечений проводов и кабелей допускается производить исходя из средних значений предельных потерь напряжения в нормальном режиме: в сетях 10(6) кВ не более 6 %, в сетях 0,38 кВ (от ТП до вводов в здания) не более 4-6 %.

Большие значения относятся к линиям, питающим здания с меньшей потерей напряжения во внутридомовых сетях (малоэтажные и односекционные здания), меньшие значения — к линиям, питающим здания с большей потерей напряжения во внутридомовых сетях (многоэтажные многосекционные жилые здания, крупные общественные здания и учреждения).

СП 31-110-2003
Проектирование и монтаж электроустановок жилых и общественных зданий.
7. Схемы электрических сетей.

7.23 Отклонения напряжения от номинального на зажимах силовых электроприемников и наиболее удаленных ламп электрического освещения не должны превышать в нормальном режиме ±5 %, а предельно допустимые в послеаварийном режиме при наибольших расчетных нагрузках — ±10 %. В сетях напряжением 12-50 В (считая от источника питания, например понижающего трансформатора) отклонения напряжения разрешается принимать до 10 %.

Для ряда электроприемников (аппараты управления, электродвигатели) допускается снижение напряжения в пусковых режимах в пределах значений, регламентированных для данных электроприемников, но не более 15 %.

С учетом регламентированных отклонений от номинального значения суммарные потери напряжения от шин 0,4 кВ ТП до наиболее удаленной лампы общего освещения в жилых и общественных зданиях не должны, как правило, превышать 7,5 %. Размах изменений напряжения на зажимах электроприемников при пуске электродвигателя не должен превышать значений, установленных ГОСТ 13109.

ГОСТ Р 50571.15-97 (МЭК 364-5-52-93). Электроустановки зданий.
Часть 5. Выбор и монтаж электрооборудования. Глава 52. Электропроводки.
525. Потери напряжения в электроустановках зданий.

МЭК 60364-7-714-1996, IEC 60364-7-714 (1996). Электрические установки зданий.
Часть 7. Требования к специальным установкам или помещениям.
Раздел 714. Наружные осветительные установки.

в свободном переводе автора статьи:

714.512. Падение напряжения в нормальных рабочих условиях должно быть совместимо с условиями, возникающими от пускового тока ламп.

РД 34.20.501-95
Правила технической эксплуатации электрических станций и сетей РФ.
5. Электрическое оборудование электростанций и сетей.

ГОСТ Р МЭК 60204-1-99 (МЭК 60204-1). Безопасность машин.
Электрооборудование машин и механизмов. Общие требования.
13 Кабели и провода. 13.5 Падение напряжения на проводах

РМ 2559
Инструкция по проектированию учета электропотребления в жилых и общественных зданиях.

Расчетная проверка сечений жил кабелей на потерю напряжения.

Сечение кабелей и проводов, выбранное из условий нагрева и согласованное с коммутационными возможностями аппаратов защиты, нужно проверять на относительную линейную потерю напряжения. 

где U — напряжение источника электрической энергии, Uном — напряжение в месте присоединения приемника. 

Допустимое отклонение напряжения на зажимах двигателей от номинального не должно превышать ±5 %, а в отдельных случаях оно может достигать +10 %. 

В осветительных сетях снижение напряжения у наиболее удаленных ламп внутреннего рабочего освещения и прожекторных установок наружного освещения не должно превышать 2,5 % номинального напряжения ламп, у ламп наружного и аварийного освещения — 5 %, а в сетях напряжением 12.,.42 В — 10 %. Большее снижение напряжения приводит к существенному уменьшению освещенности рабочих мест, вызывает снижение производительности труда и может привести к условиям, при которых зажигание газоразрядных ламп не гарантировано. Наибольшее напряжение на лампах, как правило, не должно превышать 105 % его номинального значения. 

Повышение напряжения сетей внутреннего электроснабжения выше предусмотренного нормами не допустимо, так как оно приводит к существенному увеличению расхода электрической энергии, сокращению срока службы силового и осветительного электрооборудования, а иногда к снижению качества выпускаемой продукции.

При проектировании электроснабжения и электрооборудования жилища важна величина действительной части, т.е. потеря напряжения. Проверка выбранных проводников по потере напряжения из условия обеспечения необходимых(регламентированных стандартами) уровней напряжения у самых удаленных от источника питания потребителей осуществляется следующим образом. Выполняется расчет потери напряжения (%) по формулам:-рассотрим для трех фазной сети:

Где

н – номинальное напряжение, В (380 В – симметричной трехфазной сети);

 R – активное сопротивление проводника, Ом;

Х – индуктивное сопротивление проводника, Ом;

Сos ϕ– коэффициент мощности нагрузки;

 I р max– максимальный расчетный ток нагрузки, А;

ΔU – потеря напряжения, % от номинального.

Без учета индуктивного сопротивления линии на потерю напряжения, как правило, рассчитываются:

-сети постоянного тока;

-линии сети переменного тока, для которых коэффициент мощности Cos ϕ= 1;

-сети, выполненные проводами внутри зданий или кабелями, если их сечения не превосходят табличных значений.

Индуктивным сопротивлением проводников сечением менее 50 мм2 можно пренебречь,т.е. Х

При отсутствии какой-либо другой информации величину Х можно принимать Ом/м.

Активное сопротивление проводников (Ом) определяется по одной из известных формуле,

где ρ– удельное сопротивление проводника, Ом • мм2/ м;

γ– удельная проводимость проводника, м / Ом • мм2;

S – сечение проводника, мм2;

l – длина проводника.

Значение удельного сопротивления и удельной проводимости для:

Медных проводников ρм=0,0189 Ом • мм2/ м;γм= 53 м / Ом • мм2;

-алюминиевых проводниковρа =0,0315 Ом • мм2/ м; γа = 31,7 м / Ом • мм2.

Допустимая величина падения напряжения определяется по формуле:

Где ΔU пд– предельно допустимые потери напряжения в питающей приемник цепи, %;

105-напряжение холостого хода на вторичной стороне питающего трансформатора, %

ΔU тр– падение напряжения в трансформаторе, питающем данный объект, %;

ΔU min д– минимально допустимое напряжение на зажимах электроприемника, %.

Допустимые отклонения напряжения у приемников электроэнергии смотрят в табличных данных. .Затем проверяется выполнение условия:

Для проверки проводников по потере напряжения можно также использовать таблицы удельных потерь напряжения ,которые составлены на основании данных, приведенных в Справочнике по расчету проводов и кабелей и адаптированных к действующим в настоящее время нормам и правилам. В таблицах находят удельные потери напряжения для электропроводок,воздушных и кабельных линий в зависимости от величины коэффициента мощности. Для проводов и кабелей из цветного металла эти потери выражены в процентах на 1 кВт•км в зависимости от напряжения линии. Потеря напряжения в линии при заданном сечении проводов и кабелей из цветных металлов определяется по формуле,

где М а – сумма произведений активных нагрузок на длины участков линии, кВт•км;

ΔU  м.б. – табличное значение удельной величины потери напряжения в процентах на 1 кВт•км.

Определение сечения проводов по заданной величине потери напряжения производится следующим образом. Определяется расчетное значение

ΔU мб п о ф о р м у л е :

и по соответствующей таблице подбирается сечение провода с ближайшим меньшим значением у д е л ь н о й п о т е р и н а п р я ж е н и я

Способы снижения потерь в кабеле

Кроме нарушения нормальной работы электроприборов, падение напряжения в проводах приводит к дополнительным расходам на электроэнергию. Уменьшить эти затраты можно разными способами:

  • Увеличение сечения питающих проводов. Этот метод требует значительных расходов на замену кабелей и тщательной проверки экономической целесообразности;
  • Уменьшение длины линии. Прямая, соединяющая две точки, всегда короче кривой или ломаной линии. Поэтому при проектировании сетей электроснабжения линии следует прокладывать максимально коротким прямым путём;
  • Снижение окружающей температуры. При нагреве сопротивление металлов растёт, и увеличиваются потери электроэнергии в кабеле;
  • Уменьшение нагрузки. Этот вариант возможен при наличии большого числа потребителей и источников питания;
  • Приведение cosφ к 1 возле нагрузки. Это уменьшает потребляемый ток и потери.

К сведению. Улучшение вентиляции в кабельных лотках и других конструкциях приводит к снижению температуры, сопротивления и потерь в линии.

Для достижения максимального эффекта необходимо комбинировать эти способы между собой и с другими методами энергосбережения.

Расчёт падения напряжения и потерь электроэнергии в кабеле важен при проектировании систем электроснабжения и кабельных линий.

Как снизить потери ?

Одним из способов снижения потери напряжения в проводнике, является увеличение его сечения. Помимо этого, рекомендуется сократить его протяженность и удаленность от точки назначения. В некоторых случаях эти способы не всегда можно применить по техническим причинам.В большинстве случаем, сокращение сопротивления позволяет нормализовать работу линии.

Главным недостатком большой площади сечения кабеля, являются существенные материальные затраты в процессе использования. Именно поэтому правильный расчёт и подбор нужного диаметра, позволяют избавиться от этой неприятности. Калькулятор в режиме онлайн применяют для проектов с высоковольтными линиями. Здесь программа помогает правильно рассчитать точные параметры для электрической цепи.

Расчет падения напряжения в кабеле формула и причины

  1. Что нам нужно знать?
  2. Причины падения напряжения
  3. Результат падения напряжения
  4. Рассчитываем падение напряжения
  5. Приведем пример.
  6. Как уменьшить падение напряжения в электрической сети
  7. Как уменьшить потери в кабеле

Доброго дня, уважаемые гости и читатели нашего блога! Сегодня мы хотели бы рассказать Вам о том, как выбрать электрический провод для системы энергоснабжения объекта так, чтобы

не пришлось кусать локти, сетуя на скачки напряжения или нехватку мощности для одновременного питания всего комплекса оборудования.

Основной акцент в этом деле делаем на диаметр провода для проходящего по нему тока, и расчет падения напряжения в кабеле как раз и призван решить эту задачу.

Давайте вместе выясним, как производится расчет, а также узнаем, каким образом можно увеличить показатель силового напряжения электрической сети, повысив тем самым безопасность электроустановок.

Расчет потерь напряжения в кабеле

Для вычисления потерь напряжения кабеля вся система заменяется на эквивалентную, которую можно представить следующим образом:

На схеме Zп — комплексное сопротивление проводника, Zн — комплексное сопротивление нагрузки. В зависимости от типа питания нагрузки (однофазная или трехфазная), сопротивление кабельной линии будет иметь последовательное или параллельное соединение по отношению к нагрузке. При равенстве сопротивлений Zп1 = Zп2 = Zп3 и Zн1 = Zн2 = Zн3 ток в нулевом проводе отсутствует, поэтому для трехфазных линий потери напряжения рассчитываются для одного проводника. В однофазных линиях, а также в цепи постоянного тока, ток идет по двум проводникам, поэтому вводится коэффициент 2 (при условии равенства Zп1=Zп2).

Расчет потерь линейного (между фазами) напряжения в кабеле при трехфазном переменном токе (U=380 В) производится по формулам:

  • ΔU = √3 × I × Zк = √3 × I × (Rк + Xк).
  • Для расчета в процентном соотношении ΔU = (√3 × I × Zк) / Uл = (√3 × I × (Rк + Xк)) / Uл.

Расчет потерь фазного (между фазой и нулевым проводом U=220 В) напряжения в кабеле производится по формулам:

  • ΔU = I × Zк = I × 2 × (Rк + Xк).
  • Для расчета в процентном соотношении ΔU = (I × Zк) / Uф = (I × 2 × (Rк + Xк)) / Uф.

Расшифровка формул:

  • ΔU — потеря напряжения.
  • Uл — линейное напряжение.
  • Uф — фазное напряжение.
  • I — ток, протекающий в линии.
  • Zк — полное сопротивление кабельной линии.
  • Rк — активное сопротивление кабельной линии.
  • Xк — реактивное сопротивление кабельной линии.

Коэффициент мощности (cosφ) определяется как отношение активной мощности к полной или равен отношению косинуса этих величин.

cosφ = P / S, где P — активная мощность, S — полная мощность. S = √(P² + Q²). Q — реактивная мощность.

Величина cosφ может изменяться в диапазоне от 0 до 1. Чем ближе коэффициент к 1, тем лучше, так как при cos φ = 1 потребителем реактивная мощность не потребляется, следовательно, меньше потребляемая полная мощность в целом. Низкий коэффициент указывает на то, что на внутреннем сопротивлении потребителя выделяется повышенная реактивная мощность.

Расчет потерь напряжения в кабеле

В процессе проектирования электрической проводки, необходимо провести точные расчеты потери напряжения в кабеле. Это позволяет предотвратить сильное нагревание поверхности проводов в процессе эксплуатации. Благодаря этим мерам удаётся избежать появления короткого замыкания и преждевременной поломки бытовых приборов.

Помимо этого, формула позволяет правильно подобрать диаметр сечения провода, который подойдет для разного вида электромонтажных работ. Неправильный выбор, может стать причиной поломки всей системы. Облегчить поставленную задачу помогает онлайн – расчет.

Влияние длины и сечения кабеля на потери по напряжению

Потери электроэнергии – неизбежная плата за ее транспортировку по проводам, вне зависимости от длины передающей линии. Существуют они и на воздушных линиях электропередач длиною в сотни километров и на отрезках электропроводки в несколько десятков метров домашней электрической сети. Происходят они, прежде всего потому, что любые провода имеют конечное сопротивление электрическому току. Закон Ома, с которым каждый из нас имел возможность познакомиться на школьных уроках физики, гласит, что напряжение (U) связано с током (I) и сопротивлением (R) следующим выражением:

из него следует что чем выше сопротивление проводника, тем больше на нем падение (потери) напряжения при постоянных значениях тока. Это напряжение приводит к нагреву проводников, который может грозить плавлением изоляции, коротким замыканием и возгоранием электропроводки.

При передаче электроэнергии на большие расстояния потерь удается избегать за счет снижения силы передаваемого тока, достигается это многократным повышением напряжения до сотен киловольт. В случае низковольтных сетей, напряжением 220 (380) В, потери можно минимизировать только выбором правильного сечения кабеля.

Почему падает напряжение и как это зависит от длины и сечения проводников

Для начала остановимся на простом житейском примере частного сектора в черте города или большого поселка, в центре которого находится трансформаторная подстанция. Жильцы домов, расположенных в непосредственной близости к ней жалуются на постоянную замену быстро перегорающих лампочек, что вполне закономерно, ведь напряжение в их сети достигает 250 В и выше. В то время как на окраине села при максимальных нагрузках на сеть оно может опускаться до 150 вольт. Вывод в таком случае напрашивается один, падение напряжение зависит от длины проводников, представленных линейными проводами.

Конкретизируем, от чего зависит величина сопротивления проводника на примере медных проводов, которым сегодня отдается предпочтение. Для этого опять вернемся к школьному курсу физики, из которого известно, что сопротивление проводника зависит от трех величин:

  • удельного сопротивления материала – ρ;
  • длины отрезка проводника – l;
  • площади поперечного сечения (при условии, что по всей длине оно одинаковое) – S.

Все четыре параметра связывает следующее соотношение:

очевидно, что сопротивление растет по мере увеличения длины проводника и падает по мере увеличения сечения жилы.

Для медных проводников удельное сопротивление составляет 0.0175 Ом·мм²/м, это значит, что километр медного провода сечением 1 мм² будет иметь сопротивление 17.5 Ом, в реальной ситуации оно может отличаться, например, из-за чистоты металла (наличия в сплаве примесей).

Для алюминиевых проводников величина сопротивления еще выше, поскольку удельное сопротивление алюминиевых проводов составляет 0.028 Ом·мм²/м.

Теперь вернемся к нашему примеру. Пусть от подстанции до самого крайнего дома расстояние составляет 1 км и электропитание напряжения 220 вольт до него проложено алюминиевым проводом марки А, с минимальным сечением 10 мм². Расстояние, которое необходимо пройти электрическому току складывается из длины нулевых и фазных проводов, то есть в нашем примере необходимо применить коэффициент 2, таким образом максимальная длина составит 2000 м. Подставляя наши значения в последнюю формулу, получим величину сопротивления равную 5.6 Ом.

Много это или мало, понятно из упомянутого выше закона Ома, так для потребителя с номинальным током всего 10 ампер, в приведенном примере падение напряжения составит 56 В, которые уйдут на обогрев улицы.

Конечно же, если нельзя уменьшить расстояние, следует выбрать сечение проводов большей площади, это касается и внутренних проводок, однако это ведет к увеличению затрат на кабельно-проводниковую продукцию. Оптимальным решением будет правильно рассчитать сечения проводов, учитывая максимальную допустимую нагрузку.

К помещениям первой категории относятся сухие помещения с нормальными климатическими условиями, в которых отсутствуют любые из приведенных выше факторов. Такая характеристика может соответствовать, например складскому помещению.

На практике синусоидальные напряжения электрических сетей подвержены искажениям и вместо идеальной синусоиды на экране осциллографа мы видим искаженный, испещренный провалами, зазубринами и всплесками сигнал. Эти искажения следствие влияния гармоник – паразитных колебаний кратных основной частоте сигнала, вызванных включением в сеть нелинейных нагрузок.

Как рассчитать потери напряжения в кабеле?

При проектировании сетей часто приходится рассчитывать потерю напряжения в кабеле. Сейчас я хочу рассказать про основные расчеты потери напряжения в сетях постоянного и переменного тока, в однофазных и трехфазных сетях.

Обратимся к нормативным документам и посмотри какие допустимые значения отклонения напряжения.

9.23 Отклонения напряжения от номинального на зажимах силовых электроприемников и наиболее удаленных ламп электрического освещения недолжны превышать в нормальном режиме ±5 %, а в после аварийном режиме при наибольших расчетных нагрузках—±10%. В сетях напряжения 12–42 В (считая от источника напряжения, например пони­жающего трансформатора) отклонения напряжения разрешается принимать до 10%.

Допускается отклонение напряжения для электродвигателей в пусковых режимах, но не более 15 %.При этом должна обеспечиваться устойчивая работа пусковой аппаратуры и запуск двигателя.

В нормальном режиме работы при загрузке силовых трансформаторов в ТП, не превышающей 70 % от их номинальной мощности, допустимые (располагаемые) суммарные потери напряжения от шин 0,4 кВ ТП до наиболее удаленной лампы общего освещения в жилых и общественных зданиях, учитывающие потери холостого хода трансформаторов и потери напряжения в них, приведенные ко вторичному напряжению, недолжны, как правило, превышать 7,5 %. При этом потери напряжения в электроустановках внутри зданий недолжны превышать 4 % от номинального напряжения, для постановочного освещения — 5%.

СП 31-110-2003 (РФ). 7.23 Отклонения напряжения от номинального на зажимах силовых электроприемников и наиболее удаленных ламп электрического освещения не должны превышать в нормальном режиме ±5%, а предельно допустимые в послеаварийном режиме при наибольших расчетных нагрузках — ±10%. В сетях напряжением 12-50 В (считая от источника питания, например понижающего трансформатора) отклонения напряжения разрешается принимать до 10%.

Для ряда электроприемников (аппараты управления, электродвигатели) допускается снижение напряжения в пусковых режимах в пределах значений, регламентированных для данных электроприемников, но не более 15%.

С учетом регламентированных отклонений от номинального значения суммарные потери напряжения от шин 0,4 кВ ТП до наиболее удаленной лампы общего освещения в жилых и общественных зданиях не должны, как правило, превышать 7,5%.

Размах изменений напряжения на зажимах электроприемников при пуске электродвигателя не должен превышать значений, установленных ГОСТ 13109.

ГОСТ 13109.

5.3.2 Предельно допустимое значение суммы установившегося отклонения напряжения dUy и размаха изменений напряжения в точках присоединения к электрическим сетям напряжением 0,38 кВ равно 10 % от номинального напряжения.

Потери напряжения зависят от материала кабеля (медь, алюминий), сечения, длины линии, мощности (силы тока) и напряжения.

Для расчета потери напряжения я сделал 3 программки в Excele на основе книги Ф.Ф. Карпова «Как выбрать сечение проводов и кабелей».

1 Для сетей постоянного тока индуктивное сопротивление не учитывают. Рассчитать потерю напряжения можно по следующим формулам (для двухпроводной линии):

По этим формулам я считаю потерю напряжения электроприводов открывания окон (24В), а также сети освещения (220В).

Внешний вид программы для расчета потери напряжения 12, 24, 36, 42В

2 Для трехфазных сетей, где косинус равен 1 индуктивное сопротивление также не учитывают. Этот метод также можно использовать для сетей освещения, т.к. у них cos близок к 1, погрешность получим не значительную. Формула для расчета потери напряжения (380В):

Внешний вид программы для расчета потери напряжения 220/380В

3 Расчет потери напряжения с учетом индуктивного сопротивления применяют в остальных случаях, в частности в сетях. Формула для расчета потери напряжения с учетом индуктивного сопротивления:

Внешний вид программы для расчета потери напряжения 380В, 6кВ, 10кВ

Чтобы получить программу, зайдите на страницу МОИ ПРОГРАММЫ.

Понравилась статья? Поделиться с друзьями:
Журнал «Наш дворик»
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: