Сообщающиеся сосуды

Содержание

В Относительная плотность Это безразмерное соотношение, которое существует между плотностью вещества и другого эталонного вещества, которым обычно является вода при температуре 4 ° C (39,2 ° F) для жидкостей и твердых веществ, в то время как для газов используется сухой воздух.

В некоторых текстах его также называют удельный вес (дословный перевод удельный вес на английском языке), но это та же концепция. Обе плотности должны быть в одной системе единиц и измерены при одинаковых условиях давления и температуры.

Относительная плотность рассчитывается математически следующим образом:

Относительная плотность = плотность материала / плотность воды

Хотя плотность любого вещества зависит от давления и температурных условий, в которых оно измеряется, особенно когда речь идет о газах, относительная плотность является очень полезным понятием для быстрой характеристики различных материалов.

Это видно сразу, так как плотность воды примерно 1 грамм на каждый кубический сантиметр: 1 г / см или 1000 кг / м3, при атмосферном давлении и в хорошем температурном диапазоне (от 0 до 15 º C).

По относительной плотности вещества сразу становится известно, насколько оно легкое или тяжелое по отношению к воде, универсальному веществу.

Кроме того, относительную плотность легко запомнить, поскольку она измеряется небольшими и простыми в обращении числами, как будет показано в следующем разделе, в котором упоминаются значения относительной плотности для некоторых известных веществ.

Сжимаемость жидкости

Сжимаемость
жидкости это свойство жидкостей изменять
свой объём при изменении давления. 

С

жимаемость
характеризуется коэффициентом
объёмного сжатия

(сжимаемости) βP,
представляющим собой относительное
изменение объёма жидкости W
при изменении давления P
на единицу.

Знак минус в формуле
указывает, что при увеличении давления
объём жидкости уменьшается.

Единицы измерения:Па-1(Паскаль.
1Па=1Н/м2).

Перепишем определение

в виде

Обе части умножим
на знаменатель и перенесём в левую часть

Учтём, что

и подставим в
предыдущее равенство

Выразив отсюда W,
можно получить формулу для вычисления
нового значения объёма при известном
увеличении давления

Если учесть, что
все изменения объёма происходят при
неизменной массе за счёт изменения
плотности (

и

Откуда выразив ρ,
получим

Изменение объёмаdW,
происходящее за счёт изменения плотности
при постоянной массе, можно записать в
виде

Подставив это в
определение βP,
определим коэффициент сжимаемости
жидкости через изменение плотности

Отсутствие знака
минус в этом выражении означает, что
увеличение давления приводит к увеличению
плотности.

Величина, обратная
коэффициенту сжимаемости, или, по-другому,
коэффициенту объёмного сжатия

и называется
объёмным модулем упругости жидкости.

Тогда предыдущая
формула примет вид

Это выражение
называется законом Гука для жидкости.

Единицы измерения:, ,
[кГс/ см
2.

М

одуль
упругости Еж
зависит от температуры и давления.
Поэтому различают два модуля упругости:
адиабатический и изотермический. Первый
имеет место при быстротекущих процессах
без теплообмена. Процессы, происходящие
в большинстве гидросистем, происходят
с теплообменом, поэтому чаще используется
изотермический модуль упругости.
Примерная форма зависимостей Eж
от P
и t
представлена на графиках. Всё это говорит
о том, что жидкости не вполне точно
следуют закону Гука.

Приведём несколько
примеров значений модулей упругости.

Минеральные масла,
используемые в технологических машинах
с гидравлическим приводом, при t
= 20
оC
имеют объёмные модули упругости 1,35·103
÷ 1,75·10
3
МПа
(меньшее
значение относится к более легкому
маслу), бензин и керосин – приблизительно1,3·103
МПа
,
глицерин — 4,4·103
МПа
, ртуть
– в среднем 3,2·103
МПа
.

В практике
эксплуатации гидравлических систем
имеются случаи, когда вследствие действия
того или иного возмущения в жидкости
может значительно изменяться давление.
В таких случаях пренебрежение сжимаемостью
приводит к существенным погрешностям.

Известно, что
скорость распространения звука с
в однородной жидкости можно определить
по формуле

Если вспомнить,
что

В этом случае
изменение плотности жидкости, вызванное
изменением давления, будет

Общая характеристика

Каждый элемент занимает индивидуальную величину. Определение плотности может обозначаться греческой буквой ρ, D или d. Если объемы двух тел одинаковы, а массы различны, тогда плотности не идентичны.

Основные понятия

Определения и характеристики показателя известны с 7 класса школьной программы химии. Плотность представляет собой физическую величину о свойствах вещества. Это удельный вес любого элемента. Существует средняя и относительная плотность. Последняя классификация — это отношение плотности (П) вещества к П эталонного вещества. Часто за эталон принимают дистиллированную воду. Единица измерения П- кг/м3 в интернациональной системе.

Формула нахождения плотности:

P = m/V

Обозначения:

  • m — масса.
  • V — объем.

Кроме стандартной формулы плотности, применяемой для твердых состояний веществ, имеется формула для газообразных элементов в нормальных условиях.

ρ (газа) = M/Vm M

Расшифровка:

  • М — молярная масса газа [г/моль].
  • Vm — объем газа (в норме 22,4 л/моль).

Для сыпучих и пористых тел различают истинную плотность, вычисляемую без учета пустот, и удельную плотность, рассчитываемую как отношение массы вещества ко всему объему. Истинную П получают через коэффициент пористости — доли объема пустот в занимаемом объеме. Для сыпучих тел удельная П называется насыпной.

Способы измерения:

  • Пикнометр. Измеряет истинную П.
  • Ареометр, денсиметр, плотномер. Используется для жидкого состояния.
  • Бурик. Измеряет П почвы.

Вещества состоят из молекулярных структур, масса тела формируется из скопления молекул. Аналогично вес пакета с карамелью складывается из масс всех конфет в мешке. Если все сладости одинаковые, то массу упаковки определяют умножением веса одной конфеты на количество штук.

Молекулярные частицы чистого вещества одинаковы, поэтому вес капли воды равен произведению массы 1 молекулы Н2О на число составляющих молекул в капле. Плотность вещества показывает, чему равна масса одного кубического метра.

Плотность воды — 1000 кг/м³, а масса 1 м³ Н2О равна 1000 килограмм. Это число можно вычислить, умножив массу 1 молекулы воды на количество молекулярных частиц, содержащихся в 1 м3 объема.

При равнозначности физических масс двух тел их объемы различаются. Например, объём льда в девять раз больше объема бруска из металлического сплава. Масса тела распределяется неодинаково, устанавливает П в каждой точке тела.

Влияние факторов

П зависит от давления и температуры. При высоком давлении молекулы плотно прилегают друг к другу, поэтому вещество обладает значительной плотностью.

Зависимость показателей учитывается при расчете П. При повышении температуры П снижается из-за термического расширения, при котором объем вырастает, а масса остается прежней. Если температура снижается, П увеличивается, хотя имеются вещества, П которых при некоторых условиях температурного режима ведет себя иначе. Это вода, бронза, чугун. При фазовом переходе, модифицировании агрегатного состояния П меняется скачками. Условия вычисления зависят от свойств веществ, молекулярных элементов. Для разных природных объектов П изменяется в широком диапазоне.

П воды ниже П льда из-за молекулярной структуры твердой формы жидкости. Вещество, переходя из жидкой в твердую форму, изменяет молекулярную структуру, расстояние между составными частицами сужается и плотность увеличивается. Зимой, если забыть слить воду из труб, их разрывает на части после замерзания. На П Н2О влияют примеси. У морской воды знак П выше, чем у пресной. При соединении в одном стакане двух типов жидкости пресная останется на поверхности. Чем выше концентрация соли, тем больше П воды.

Когда плотность вещества больше П воды, оно полностью погрузится в воду. Предметы, сделанные из материала по низкой П, будут плавать на поверхности воды. На практике эти свойства используются человеком. Сооружая суда, инженеры-проектировщики применяют материалы с высокой П. Корабли, теплоходы, яхты смогут затонуть во время плавания, в корпусах суден создают специальные полости, наполненные воздухом, ведь его П ниже плотности воды.

Жирные пятна масла, нефти, бензина остаются на поверхности воды из-за низкой П маслянистых веществ.

Понятие относительной плотности

Уже само название этой величины говорит о том, что изучаемая величина для одного тела будет рассматриваться относительно аналогичной характеристики для другого. Формула относительной плотности ρr имеет такой вид:

ρr = ρs / ρ0.

Где ρs — плотность измеряемого материала, ρ0 — плотность, относительно которой измеряется величина ρr. Очевидно, что ρr является безразмерной. Она показывает, во сколько раз измеряемое вещество плотнее, чем выбранный стандарт.

Для жидкостей и твердых тел в качестве стандартной ρ0 выбирают эту величину для дистиллированной воды при температуре 4 oC. Именно при этой температуре вода имеет максимальную плотность, которая составляет удобную для расчетов величину — 1000 кг/м3 или 1 кг/л.

Для газовых систем в качестве стандартной принято использовать плотность воздуха при атмосферном давлении и температуре 0 oC.

Как использование данной информации может быть полезным в промышленности и научных исследованиях?

Сведения о том, во сколько раз плотность жидкости изменяется при наличии двух несмешивающихся жидкостей в u образном сосуде, имеют важное значение в промышленности и научных исследованиях. Промышленность:

Промышленность:

  • Масло и газ: Знание о разнице в плотности помогает в разработке и функционировании оборудования для добычи нефти и газа. Это позволяет обеспечить правильную работу буровых установок и скважин, а также оптимизировать процессы перекачки и хранения этих важных ресурсов.
  • Химическая и фармацевтическая промышленность: Формулирование и смешивание различных химических веществ часто осуществляется на основе их плотности. Полученные данные о разнице в плотности могут быть использованы для определения соотношения компонентов и управления качеством продукции.
  • Пищевая промышленность: В процессе производства пищевых продуктов необходимо контролировать консистенцию и текучесть различных ингредиентов. Знание о разнице в плотности помогает определить, когда и в каком объеме добавлять ингредиенты, чтобы достичь желаемой текстуры и вкуса.

Научные исследования:

  • Гидродинамика: Исследование поведения жидкостей с разными плотностями позволяет лучше понять и моделировать движение жидкостей в природных и промышленных системах. Это может быть полезным при анализе течения рек и океанов, разработке новых методов очистки сточных вод и оптимизации эффективности водных насосов.
  • Биология и медицина: В изучении биологических систем, таких как клетки и органы, плотность играет важную роль. Измерение разницы в плотности различных биологических субстанций, таких как кровь и ткани, может помочь в диагностике и лечении заболеваний, а также в разработке новых методов доставки лекарственных препаратов.
  • Материаловедение: Знание о разнице в плотности жидкостей может быть полезным при изучении и характеризации различных материалов. Это может помочь в определении и контроле физических свойств материалов, таких как прочность, упругость и теплопроводность.

Таким образом, использование этой информации в промышленности и научных исследованиях позволяет улучшить процессы производства, разработать новые технологии и решить важные научные вопросы, что является ключевым для развития различных отраслей и достижения новых научных открытий.

Как влияют внешние воздействия на расчет

Понятие «плотность» зависимо от условий окружающей среды, в которых происходит ее измерение. По мере повышения либо понижения температуры плотность начинает постепенно уменьшаться. Например, плотность воды при температуре кипения составляет 958,4 кг/м3. Однако таким образом ведут себя не все жидкости. Многие, испытывая понижение температуры, увеличивают свою плотность.

Пример

Водка при 20°C имеет плотность 935 кг/м3, а при 80°C — 888; нафталин при 230°C — 865 кг/м3, при 320°C — 794 кг/м3; раствора сахара при 20°C — 1333 кг/м3, при 100°C — 1436 кг/м3. Значение аналогичных величин вынесены в специальные таблицы, которые носят справочный характер.

Для вычисления ρ при изменении температуры вещества применяется формула:

\(\rho t=\rho20\div(1+\beta t\times(t-20))\)

Существуют особенности изменения плотности при переходе вещества из одного агрегатного состояния в другое. Так, обычная вода при затвердевании уменьшает свою плотность. Касательно других жидкостей — при переходе в твердое состояние ρ чаще растет.

Еще один внешний фактор, под действием которого жидкость сжимается, а, следовательно, ее плотность меняется, является внешнее давление. Однако так называемая сжимаемость жидкого вещества совсем невелика — 10-6бар.

Для характеристики реакции жидкого тела на воздействие внешнего давления вводится термин — сжимаемость. Она высчитывается по формуле:

\(\beta w=\Delta W\div W\times\Delta p=1\div\rho\times(\Delta\rho\div\Delta p)\)

Где βw — коэффициент объемного сжатия, ΔW — разница в изменении объема, Δρ — изменение плотности, Δp — изменение объема.

Введена еще одна величина, имеющая отношение к сжимаемости. Это объемный модуль упругости (Еж).

Она обратна коэффициенту объемного сжатия и определяется по формуле:

\(Еж=1\div\beta.\)

В качестве единицы измерения выступает Па — паскаль. Для примера, Еж воды равняется 2 000 МПа. 

Различные способы измерения относительной плотности

Относительная плотность, также известная как плотность относительно воды или плотность воздуха, является важной физической характеристикой материала. Она определяется как отношение массы данного материала к массе равного объема воды или воздуха при определенных условиях

Измерение относительной плотности может выполняться различными способами, в зависимости от типа материала и доступного оборудования. Некоторые из наиболее распространенных методов измерения включают:

  1. Поплавок в жидкости: Этот метод использует принцип Архимеда, согласно которому тело, погруженное в жидкость, испытывает поддерживающую силу, равную весу вытесненной жидкости. Измеряя вес тела и вытесненной жидкости, можно вычислить плотность материала.
  2. Гидростатический взвесыватель: Этот метод использует архимедову силу, создаваемую взвешиваемым образцом и жидкостью, чтобы измерить плотность материала. Образец помещается в жидкость, затем измеряется изменение силы, на которую подвергается весы.
  3. Пикнометр: Пикнометр — это стеклянный сосуд с плотно закрывающейся пробкой, который используется для измерения плотности жидкостей и твердых веществ. Пикнометр наполняется жидкостью (или взвешивается с твердым образцом), а затем взвешивается. Путем сравнения массы пикнометра с жидкостью и без жидкости можно определить плотность материала.
  4. Гидростатическая сортировка: Этот метод использует гравитацию, чтобы разделить материалы разной плотности. Материалы помещаются в жидкость, и они опускаются или всплывают в зависимости от своей плотности. С помощью этой процедуры можно определить относительную плотность.

Относительная плотность может измеряться в различных единицах, в зависимости от выбранной системы измерения. В международной системе единиц (СИ) она измеряется в килограммах на кубический метр (кг/м³). В английской системе единиц относительная плотность может измеряться в фунтах на кубический фут (lb/ft³) или унциях на галлон (oz/gal).

Измерение относительной плотности играет ключевую роль во многих отраслях, таких как строительство, химия, медицина и технические науки. Знание плотности материала позволяет ученому или инженеру понять его свойства и использовать его в различных приложениях.

Технические характеристики

Каждая подгруппа глин отличается значениями пористости, минерализации поровой воды, емкости обменного комплекса, объемного и удельного веса, теплопроводности и так далее, так как эти показатели напрямую зависят от размеров частиц материала, а также от их химического и минерального состава. Таблица показателей удельного веса для различных видов глины:

Теплопроводность влажного сырья находится в пределах от 0,4 до 3,0 Вт/(м·К), а сухого — 0,1÷0,3 Вт/(м·К).

Плотность глины

Для глины, как правило, указывают насыпную плотность, реальную, технологическую и условную (ее определяют в лабораторных условиях). Причем, условная всегда значительно превышает реальную. Плотность вычисляют, разделив массу тела на занимаемый им объем. В системе СИ плотность измеряют в кг/м², а в системе СГС в г/см³. Плотность мокрой глины колеблется в пределах от 1600 до 1820 кг/м², а плотность сухой находится в пределах до 1000 кг/м³.

Одним из технических показателей пластичного материала (как впрочем, и других сыпучих веществ) является коэффициент уплотнения, который определяется отношением фактической объемной плотности к объему нормально уплотненного материала, находящегося на определенной глубине (опытным путем была доказана зависимость плотности глины от глубины ее залегания). Плотность считается нормальной, если это отношение равно единице; если меньше 1, то горная порода недостаточно уплотнена.

Что такое плотность воды?

Вода уникальна тем, что это единственная материя, встречающаяся в трёх различных состояниях. Соответственно, в жидком она встречается повсеместно — это можно назвать исходной формой. Её твердое состояние — лёд, снег, а газообразное — водяной пар. Вещество в любой форме имеет одно химическое обозначение — H 2 O.

Каждая форма состояния воды имеет собственную характеристику:

  • снег — мягкий, рыхлый, концентрация низкая;
  • лёд — твердый, концентрация также ниже,
  • вода — текучая: наиболее высокий показатель, достигаемый при 4°C;
  • а водяные пары — не имеют формы, а плотность неизмерима.

Кроме того, твердая форма всегда имеет отрицательную температуру, то есть всегда холодная. Вода, в свою очередь, бывает любой температуры, но при высокой начинает испаряться — так, пар бывает только горячим. Впрочем, он остывает при смешивании с воздухом и растворяется, поднимаясь выше от источника.

Отличаются и другие характеристики: снег быстро растает, если его поместить в воду, а лёд будет какое-то время плавать. Снежную массу и воду можно окрашивать, а лёд и пар — нет. Конечно, получить цветные льдинки возможно, но для этого нужно замораживать окрашенную воду. Однако, следует учесть, что такое окрашивание может незначительно изменить параметр плотности из-за использованного красителя.

Плотность воды по-своему уникальна, поскольку замерзшей она имеет вес меньший, чем обычно. Соответственно, параметр также снижается. Иначе говоря, замерзшая вода на разных стадиях заморозки будет иметь вес всё меньше и меньше. Так, полностью заледеневшая вода имеет массу меньшую, чем снег. А водяной пар весит и того меньше, следовательно, его плотность также уменьшается и как её определить — неизвестно.

Параметр вычисляется массой, разделенной на единицы объема в кг на м³. Другие особенности:

  1. Вода может иметь разную массу и, следовательно, концентрацию из-за количества примесей и добавок.
  2. Плотность чистой воды зависит от температуры: снижается как при росте, так и при снижении до минуса.
  3. Не все жидкости — вода. Так, к примеру, плотность воды и бензина различна, несмотря на общую характеристику равномерного понижения при нагреве.

Максимальный зарегистрированный параметр составил 1000кг на м³ при температуре в пределах 3-4°C. Увеличение и снижение показали схожие результаты на понижение плотности. Можно сделать вывод, что наибольшую плотность вода имеет в этом температурном диапазоне.

Измерительные приборы

Пикнометр.

Плотность жидкости, твердого тела или газа можно определить с помощью пикнометра или расходомера Кориолиса . Для твердых веществ также можно использовать весы и выполнять взвешивание в воздухе, а затем в жидкости (предпочтительно в воде), этот метод обеспечивает большую точность. Что касается жидкостей, можно использовать ареометр, но измерение будет не таким точным, как при простом измерении со стандартной емкостью.

Автоматический плотномер для газа и жидкости, использующий принцип колеблющейся U-образной трубки.

Другой возможностью для определения плотности жидкостей и газов является использование цифрового прибора, основанного на принципе колеблющейся U-образной трубки, электронного плотномера, результирующая частота которого пропорциональна плотности вводимого продукта.

Масса и Плотность Вселенной

Хотя размер всей вселенной точно не известен, наблюдаемая вселенная, материя во вселенной, которую исследовали ученые, имеет массу около 2 × 10 55 г, что составляет около 25 миллиардов галактик размером с Млечный путь. Это охватывает 14 миллиардов световых лет, включая темную материю, независимо от того, что ученые не совсем уверены в том, из чего она состоит, и в светящейся материи, что объясняет звезды и галактики. Плотность Вселенной составляет около 3 х 10 -30 г / см 3.

Ученые приходят к этим оценкам, наблюдая за изменениями Космического микроволнового фона (артефакты электромагнитного излучения от примитивных стадий Вселенной), сверхскоплений (скопления галактик) и нуклеосинтеза Большого взрыва (образование неводородных ядер на ранних стадиях вселенная).

Примеры решения задач

Задание Необходимо приготовить 250 г 6%-ного раствора соли. Вычислите массу воды и соли, необходимую для приготовления подобного раствора.
Решение Запишем формулу для расчета массовой доли растворенного вещества в растворе:

Отсюда следует, что масса соли, необходимая для приготовления её 250 г 6%-ного раствора будет равна:

Ответ Масса воды равна 235 г, масса соли равна 15 г.

Задание Вычислите массу воды, необходимую для приготовления 50 г 10%-ного раствора соли.
Решение Запишем формулу для расчета массовой доли растворенного вещества в растворе:

Отсюда следует, что масса соли, необходимая для приготовления её 250 г 6%-ного раствора будет равна:

Атмосферное давление

Атмосфера — воздушная оболочка Земли. Она существует благодаря земному притяжению и беспорядочному движению молекул в газообразном состоянии. В состав атмосферы входят азот, кислород и другие газы. Атмосфера не имеет четкой границы, а плотность воздуха уменьшается с высотой.

Определение

Атмосферное давление — давление «воздушного океана», которое также уменьшается с высотой.

Ртутный барометр

Определение

Ртутный барометр — прибор для определения атмосферного давления, созданный Торричелли. Состоит из стеклянной трубки, запаянной с одного конца, длиной 1 м, заполненной ртутью, а также из широкого сосуда, в который выливается ртуть после поворота трубки.

По свойству сообщающихся сосудов:

pатм = pртути (мм рт. ст.).

Формула для определения атмосферного давления (в паскалях):

pатм = pртgh

pатм — атмосферное давление, pрт — плотность ртути (13600 кг/м3), g — ускорение свободного падения (9,8 м/с2 или округленно — 10 м/с2), h — высота ртутного столба (м).

Дополнительные единицы измерения атмосферного давления:

1 мм рт. ст. = 133 Па

1 атм (атмосфера) = 105 Па

Нормальное атмосферное давление равно: p0 = 105 Па.

Пример №3. С какой силой давит воздух на поверхность письменного стола, длина которого 120 см, ширина — 60 см, если атмосферное давление равно 100 кПа?

Сила давления есть произведение давления на площадь. Поэтому:

F = pS = pab = 105∙1,2∙0,6 = 72 кН.

Задание EF18172 В широкую U-образную трубку, расположенную вертикально, налиты жидкости плотностью ρ1 и ρ2 (см. рисунок). Жидкости не смешиваются. На рисунке b = 15 см, h = 30 см, H = 35 см. Отношение плотности ρ1 к плотности ρ2 равно …

Ответ:

а) 0,67

б) 0,75

в) 0,86

г) 1,33

Алгоритм решения

1.Записать исходные данные.

2.Записать условие равновесия неоднородных жидкостей в сообщающихся сосудах.

3.Выполнить решение задачи в общем виде.

4.Вычислить искомую величину, подставив известные значения.

Решение

Запишем исходные данные:

• Уровень жидкости в левом колене: H = 35 см.

• Уровень жидкости в правом колене: h = 30 см.

• Высота столба более плотной жидкости в левом колене: b = 15 см.

Внимание! В данном случае переводить единицы в СИ необязательно, так как на величину отношения они никак не повлияют. Запишем условие равновесия

Давление на уровне b в обоих коленах должно быть одинаковое. Поэтому:

Запишем условие равновесия. Давление на уровне b в обоих коленах должно быть одинаковое. Поэтому:

ρ1g(H – b) = ρ2g(h – b)

Отсюда:

ρ1ρ2=g(h−b)g(H−b)=h−bH−b=30−1535−15=1520=0,75

Ответ: б

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF22683 В комнате находится открытая сверху U-образная трубка, в которую налита ртуть (рис. а). Левое колено трубки плотно закрывают пробкой (рис. б), после чего температура в комнате увеличивается. Что произойдёт с уровнями ртути в коленах трубки? Атмосферное давление считать неизменным. Ответ поясните, указав, какие физические явления и закономерности Вы использовали для объяснения.

Алгоритм решения

  1. Установить, что изменится после того, как одно колено сосуда будет закупорено.
  2. Установить, что изменится после того, как температура воздуха увеличится.

Решение

Изначально давление, оказываемое атмосферой на поверхность ртути в обоих коленах, равно. Это следует из закона Паскаля и условия равновесия. Когда одно колено сообщающихся сосудов будет закупорено, сначала давление под пробкой будет равно атмосферному давлению. Но при изменении прочих условий уровень жидкостей в коленах не будет одинаков. Это связано с изменением давления, оказываемого на поверхности жидкостей в закупоренном и открытом коленах.

Если же увеличить температуру воздуха, то воздух под пробкой тоже нагреется. От этого его объем увеличится, что приведет к росту давления, которое окажется больше атмосферного на величину, равную ∆p = ρвg∆h. Суммарное давление, оказываемое со стороны закупоренного колена, будет равно сумме атмосферного давления и давления ∆p: pз = pатм + ρвg∆h. Со стороны открытого колена по-прежнему будет оказываться атмосферное давление: pо = pатм. Поэтому избыточное давление под пробкой начнет выталкивать часть ртути из левого колена в правое до тех пор, пока не наступит равновесие. При условии, что диаметр трубок одинаковый, это произойдет тогда, когда уровень ртути в открытой трубке увеличится на высоту ∆h — на ту высоту, на которую понизится уровень ртути в закупоренной трубке.

Ответ: уровень ртути в закрытом колене понизится, а в открытом — понизится.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Практическое применение

Из учебников химии и физики вычисляют уровень плотности по формуле. Но также это можно сделать, используя онлайн-систему.

Значение показателя

Окружающий мир состоит из разных веществ.

Скамейка в парке или баня за городом сооружены из древесины, подошва утюга, сковорода выполнены из металла, покрышка колеса, велосипеда — из резины. Каждый предмет имеет свой вес.

Черные дыры Вселенной составляют наибольшую плотность 1014 кг/м3. Самый низкий показатель имеет область между Галактиками (2•10−31—5•10−31 кг/м³).

Таблица плотности веществ

Вещество Плотность (кг/м3)
Сухой воздух 1,293
Металлы
Осмий 22,61
Родий 12,41
Иридий 22,56
Плутоний 19,84
Палладий 12,02
Свинец 11,35
Платина 19,59
Золото 19,30
Сталь 7,8
Алюминий 2,7
Медь 8,94
Газы
Азот 1,25
Аммиак 0,771
Аргон 1,784
Жидкий водород 70
Гелий в жидком состоянии 130
Водород 0,09
Водяной пар 0,598
Воздух 1,293
Хлор 3,214
О2 1,429
Углекислый газ 1,977
Остальные вещества
Тело человека На вдохе 940-990, при выдохе — 1010-1070
Пресная вода 1000
Солнце 1410
Гранит 2600
Земля 5520
Железо 7874
Бензин 710
Керосин 820
Молоко 1040
Этанол 789
Ацетон 792
Морская вода 1030
Древесина
Пихта 0,39
Ива 0,46
Ель 0,45
Сосна 0,52
Дуб 0,69

Способы расчета и примеры

В сети Интернет существует множество приложений для онлайн-расчета плотности веществ или материалов. В стандартные поля калькулятора вводится основная информация: масса, объем, единицы измерения. Плотность вычисляется автоматически по заданным параметрам и выводится на экран интерфейса. Можно перевести информативные данные в нужную единицу измерения.

Без использования учебной информации показатель П можно определить через физические опыты. Для лабораторных изучений нужны весы, сантиметр, если исследуемое тело находится в твердом состоянии. Для жидкости необходима колба.

Сначала измеряют объем тела, записывая результат по цифровой шкале (в сантиметрах или миллилитрах).

Вычисляя объем деревянного бруска квадратной формы, параметр стороны возводится в третью степень. Измеряя объемные характеристики, тело ставят на весы и записывают значение массы. Рассчитывая жидкое состояние, учитывают массу сосуда, куда помещено исследуемое. В формулу подставляют данные и рассчитывают показатель.

Поскольку П измеряется в кг/л или в г/см³, то иногда приходится пересчитывать одни величины в другие.

Пример 1:

Необходимо найти плотность молока, если 350 г занимают 100 см3. Для решения используют формулу, где масса делится на объем.

Решение: P=m/V = 350/100= 3,5 г/см3.

Пример 2:

Необходимо определить П мела, если масса большого куска объемом 20 см3 составляет 48 грамм. П выразить в кг/м3 и вг/см3.

Решение:

Нужно перевести см3 в кубические метры, а граммы — в килограммы.

V = 20см3= 0,00002 м3.

M= 48 г = 0,048 кг.

Плотность мела составляет 0,048 кг/0,00002 м3 = 2400 кг/м3.

Выражаем в г/см3: 2400 кг/м3 = 2400*1000/1000000 см3 = 2,4 г/см3.

Один килограмм равен 1000 грамм, один кубический метр (1м3) содержит 1000000 см 3. Плотность получится 2,4 г/см3или 2400 кг/м3.

Плавание тел в природе

Почему водные животные не нуждаются в прочных скелетах?В живой природе вес морских организмов почти полностью уравновешивается архимедовой силой, так как их плотность почти не отличается от плотности окружающей среды. Поэтому у морских животных легкие и гибкие скелеты, а у морских растений — эластичные стволы.

Каким образом рыбы могут менять глубину своего плавания и оставаться на ней? У каждой рыбы имеется плавательный (воздушный) пузырь (рисунок 6). 

Какую роль играет плавательный пузырь у рыб?Пузырь легко сжимается и расширяется: при увеличении глубины за счет мышечных усилий увеличивается давление воды на рыбу. Плавательный пузырь сжимается, и объем тела рыбы уменьшается, уменьшается величина архимедовой силы, и рыба может спокойно оставаться на выбранной глубине. То же самое происходит при уменьшении глубины, но в обратную сторону: пузырь расширяется, объем всего тела рыбы увеличивается.

Рисунок 6. Плавательный (воздушный) пузырь у рыбы

Как регулируют глубину погружения киты?Киты и другие морские млекопитающие используют для изменения глубины собственные легкие подобно плавательному пузырю у рыб. 

Айсберг — это большой кусок льда, который свободно плавает в океане, так как плотность льда меньше плотности соленой воды (рисунок 7).

Рисунок 7. Айсберг в океане

Обычно около $90 \%$ объема айсберга находится под поверхностью воды, что делает столкновение с ним очень опасным. В 1912 году знаменитое судно «Титаник» столкнулось с айсбергом в Атлантическом океане. Оно затонуло, унеся с собой жизни 1513 пассажиров. Также айсберги являются огромными хранилищами пресной воды.

{"questions":,"answer":}}}]}

Температурная зависимость

См. Плотность для получения таблицы измеренных плотностей воды при различных температурах.

Плотность веществ зависит от температуры и давления, поэтому необходимо указать температуры и давления, при которых определялись плотности или массы. Почти всегда измерения проводятся при номинальной температуре в 1 атмосферу (101,325 кПа, игнорируя изменения, вызванные изменением погодных условий), но поскольку относительная плотность обычно относится к водным растворам с высокой степенью несжимаемости или другим несжимаемым веществам (таким как нефтепродукты), изменения плотности вызванные давлением, обычно не учитываются, по крайней мере, там, где измеряется кажущаяся относительная плотность. Для расчета истинной ( в вакууме ) относительной плотности необходимо учитывать давление воздуха (см. Ниже). Температуры задаются обозначением ( T s / T r ), где T s представляет собой температуру, при которой была определена плотность образца, а T r — температура, при которой указывается эталонная плотность (воды). Например, SG (20 ° C / 4 ° C) следует понимать как означающее, что плотность образца была определена при 20 ° C, а плотность воды — при 4 ° C

Принимая во внимание различные температуры образца и эталонные температуры, отметим, что хотя SG H 2 O = 1,000000 (20 ° C / 20 ° C), также верно и то, что RD H 2 O =0,9982030,998840= 0,998363 (20 ° C / 4 ° C). Здесь температура указывается с использованием текущей шкалы ITS-90, а плотности, используемые здесь и в остальной части этой статьи, основаны на этой шкале. По предыдущей шкале IPTS-68 плотности при 20 ° C и 4 ° C составляют, соответственно, 0,9982071 и 0,9999720, в результате чего значение RD (20 ° C / 4 ° C) для воды составляет 0,9982343.

По предыдущей шкале IPTS-68 плотности при 20 ° C и 4 ° C составляют, соответственно, 0,9982071 и 0,9999720, в результате чего значение RD (20 ° C / 4 ° C) для воды составляет 0,9982343.

Температуры двух материалов могут быть явно указаны в символах плотности; Например:

относительная плотность: 8,1520 ° С 4 ° С; или удельный вес: 2,43215

где верхний индекс указывает температуру, при которой измеряется плотность материала, а нижний индекс указывает температуру эталонного вещества, с которым он сравнивается.

Понравилась статья? Поделиться с друзьями:
Журнал «Наш дворик»
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: