Электрические сети

Подборка практики по спорам о применении уровня напряжения

ЛЭП

Тут стоит рассказать о том, какие сети используются для передачи электроэнергии. От электростанции до конечного потребителя электричество проходит не только через повышающий трансформатор и высоковольтные линии. Если посмотреть на современный город с высоты, можно заметить целый клубок проводов, образующий единую сеть.

Чтобы попасть к потребителю, с высоковольтных линий ток заново поступает в трансформатор, но на этот раз напряжение понижается. После чего он подается на распределительную сеть и расходится на промышленные предприятия, которые имеют свою подстанцию для получения нужного им напряжения, на городские подстанции, которые расформировывают электричество по магистральным кабелям и на районные подстанции.

Вам это будет интересно Щупы для мультиметра

Городская подстанция

От районных подстанций через линии электропередач электричество подается в частные, многоквартирные дома и объекты инфраструктуры. В спальных микрорайонах кабеля от подстанций в основном прокладывают под землей, откуда они выходят уже на щиток подъезда, который дальше распределяет ток на каждую розетку и лампочку в доме.

Силовой ящик многоэтажки

Как происходит передача и распределение электроэнергии

Ни для кого не секрет, что электричество в наш дом попадает от электростанций, являющихся основными источниками электроэнергии.

Однако между нами (потребителями) и станцией может быть сотни километров и через все это дальнее расстояние ток должен каким-то образом передаваться с максимальным КПД.

В этой статье мы, собственно, и рассмотрим, как передается электроэнергия на расстоянии к потребителям.

Маршрут транспортировки электричества

Итак, как мы уже сказали, начальной точкой является электрическая станция, которая, собственно, и генерирует электроэнергию. На сегодняшний день основными видами электростанций являются гидро- (ГЭС), тепло- (ТЭС) и атомные (АЭС). Помимо этого бывают солнечные, ветровые и геотермальные эл. станции.

Далее от источника электричество передается к потребителям, которые могут находиться на дальних расстояниях. Чтобы осуществить передачу электроэнергии, нужно повысить напряжение с помощью повышающих трансформаторов (напряжение могут повысить вплоть до 1150 кВ, в зависимости от расстояния).

Почему электроэнергия передается при повышенном напряжении? Все очень просто.

 Вспомним формулу электрической мощности — P=UI, тогда если передавать энергию к потребителю, то чем выше напряжение на линии электропередач — тем меньше ток в проводах, при той же потребляемой мощности.

Благодаря этому можно строить ЛЭП с большим напряжением, уменьшив сечение проводов, по сравнению с ЛЭП с низшим напряжением. Значит и сократятся расходы на строительство — чем тоньше провода, тем они дешевле.

Соответственно от станции электричество передается на повышающий трансформатор (при необходимости), а после этого с помощью ЛЭП осуществляется передача электроэнергии на ЦРП (центрально распределительные подстанции). Последние, в свою очередь, находятся в городах или в близком расстоянии от них. На ЦРП происходит понижение напряжения до 220 или же 110 кВ, откуда электроэнергия передается к подстанциям.

Далее напряжение еще раз понижают (уже до 6-10 кВ) и происходит распределение электрической энергии по трансформаторным пунктам, именуемым также ТП.

К трансформаторным пунктам электричество может передаваться не по ЛЭП, а подземной кабельной линией, т.к. в городских условиях это будет более целесообразно.

Дело в том, что стоимость полосы отчуждения в городах достаточно высокая и более выгодно будет прокопать траншею и заложить кабель в ней, нежели занимать место на поверхности.

От трансформаторных пунктов электроэнергия передается к многоэтажным домам, постройкам частного сектора, гаражному кооперативу и т.д

Обращаем ваше внимание на то, что на ТП напряжение еще раз понижается, уже до привычных нам 0,4 кВ (сеть 380 вольт)

Если кратко рассмотреть маршрут передачи электроэнергии от источника к потребителям, то он выглядит следующим образом: электростанция (к примеру, 10 кВ) – повышающая трансформаторная подстанция (от 110 до 1150 кв) – ЛЭП – понижающая трансформаторная подстанция – ТП (10-0,4 кВ) – жилые дома.

Наглядно увидеть, как электрическая энергия поступает в города и доходит до жилого сектора, вы можете на картинке ниже:

Более подробно об этом вопросе рассказывают эксперты:

Как электричество поступает от источника к потребителю

Что еще важно знать

Также хотелось пару слов сказать о моментах, которые пересекаются с этим вопросом. Во-первых, уже достаточно долго проводятся исследования на тему того, как осуществить передачу электроэнергии без проводов.

Существует множество идей, но самым перспективным на сегодняшний день решением является использование беспроводной технологии WI-Fi.

Учёные из Вашингтонского университета выяснили, что этот способ вполне реален и приступили к более подробному исследованию вопроса.

Во-вторых, на сегодняшний день по ЛЭП передается переменный ток, а не постоянный.

Это связано с тем, что преобразовательные устройства, которые сначала выпрямляют ток на входе, а потом снова делают его переменным на выходе, имеют достаточно высокую стоимость, что экономически не целесообразно.

Однако все же пропускная способность линий электропередач постоянного тока в 2 раза выше, что также заставляет думать над тем, как ее более выгодно осуществить.

Вот мы и рассмотрели схему передачи электричества от источника к дому. Надеемся, вам стало понятно, как передается электроэнергия на расстоянии к потребителям и почему для этого используют высокое напряжение.

Будет интересно прочитать:

Цветовое обозначение классов напряжения

В отечественной практике расчётов и управления энергосистемами при графическом отображении электрических схем сетей и систем принято использовать унифицированное цветовое обозначение классов напряжений. При этом есть несколько стандартов и несколько вариантов цветовых схем классов напряжения, в частности внимания заслуживают прежде всего Стандарт СО ЕЭС и Стандарт ФСК ЕЭС. Таблицах ниже указаны общепринятые цветовые обозначения раздичных классов напряжения по этим стандартам .

Цветовая схема согласно стандарту СО ЕЭС
Класс напряжения Образец цвета Цвет в системе RGB
1150 кВ 205:138:255
750 кВ (800 кВ ППТ) 065:065:240
500 кВ 184:000:000
400 кВ (ЛЭП, цепи ППТ) 135:253:194
330 кВ 000:204:000
220 кВ 204:204:000
128:128:000
150 кВ 170:150:000
110 кВ 070:153:204
27 — 60 кВ 194:090:090
6 — 24 кВ 164:100:164
Генераторное напряжение 204:100:204
Без напряжения 204:204:204
150:150:150
Заземлено 255:153:000
Перегрузка 255:000:000
Неизвестно 140:140:140
Цветовая схема согласно стандарту ФСК ЕЭС
Класс напряжения Образец цвета Цвет в системе RGB
1150 кВ 205:138:255
750 кВ (800 кВ ППТ) 000:000:200
500 кВ 165:015:010
400 кВ 240:150:30
330 кВ 000:140:000
220 кВ 200:200:000
150 кВ 170:150:000
110 кВ 000:180:200
35 кВ; 20 кВ 130:100:050
10 кВ 100:000:100
6 кВ 200:150:100
до 1 кВ 190:190:190
Генераторное напряжение 230:070:230
Обесточено 255:255:255
Заземлено, ремонт 205:255:155

Разница палитр, как не трудно заметить, не драматична и не препятствует использованию ни одной из них, но предагаемый стандартом ФСК вариант, подразумевает работу в программном комплексе с черным фоном, из-за чего обесточенные участки предлагается показывать белым цветом. Таким образом, ориентация на цветовую схему стандарта СО ЕЭС является более удобной для рядовых расчётов. Категорически соблюдать требования к классам напряжения необходимо только при сотрудничестве непосредственно с соответствующими организациями.

5.11.9

. Мощность дугогасящих реакторов должна быть выбрана по емкостному току сети с учетом ее перспективного развития.

Заземляющие дугогасящие реакторы должны быть
установлены на подстанциях, связанных с компенсируемой сетью не менее
чем двумя линиями электропередачи.

Установка дугогасящих реакторов на тупиковых подстанциях не допускается.

Дугогасящие реакторы должны быть подключены к
нейтралям трансформаторов, генераторов или синхронных компенсаторов
через разъединители.

Для подключения дугогасящих реакторов, как
правило, должны использоваться трансформаторы со схемой соединения
обмоток звезда-треугольник.

Подключение дугогасящих реакторов к трансформаторам, защищенным плавкими предохранителями, не допускается.

Ввод дугогасящего реактора, предназначенный
для заземления, должен быть соединен с общим заземляющим устройством
через трансформатор тока.

5.11.7

. В сетях с изолированной нейтралью
или с компенсацией емкостных токов допускается работа воздушных и
кабельных линий электропередачи с замыканием на землю до устранения
повреждения.

При этом к отысканию места повреждения на
ВЛ, проходящих в населенной местности, где возникает опасность поражения
током людей и животных, следует приступать немедленно и ликвидировать
повреждение в кратчайший срок.

В сетях генераторного напряжения, а также в
сетях, к которым подключены двигатели высокого напряжения, работа с
замыканием на землю допускается в соответствии с п. 5.1.24 настоящих Правил.

Разногласия в ГОСТах

Как же так, есть нормы, в стандарте приведены новые требования, а практическая реализация не наступила и почти что через тридцать лет. Причиной этому послужило постоянное наращивание мощности бытовыми приборами, их количеством и растущее потребление. Поэтому энергоснабжающие организации не могли достигнуть даже допустимых отклонений предыдущего стандартного номинального напряжения.

Первый из рассматриваемых нормативов – это ГОСТ 3244-2013, предназначенный для определения основных параметров качества электрической энергии. Как один из этих показателей, в стандарте установлены допустимые диапазоны для разности потенциалов.

Разумеется, рассматривать все пункты и их расчетную часть смысла не имеет, поэтому оговорим наиболее важные моменты:

  • согласно п.4.2.2 номинальное напряжение считается 220 В между фазой и нулем, и 380 В для линейной нормы.
  • провалы напряжения, которые, как правило, обуславливаются введением мощных потребителей, длительность провала не должна превышать 1 минуты;
  • в соответствии с п.4.3.3 импульсные перенапряжения, которые могут обуславливаться атмосферными разрядами, составляют норму от 1 микросекунды до нескольких миллисекунд;
  • несимметрия трехфазной сети согласно п.4.2.5 должна составлять не более 2 – 4% коэффициента несимметрии в десятиминутном интервале по недельной характеристике.

Для сравнения с предыдущими нормами, в действии находится ГОСТ 29322-2014, который относится к международным стандартам и устанавливает номинальные характеристики рядов напряжения. Был разработан в соответствии с другими нормами — IEC 60038:2009 и аннулировал действие стандарта 1992 года. Но в нем, согласно п.3.1 номинал сетей бытовой энергии устанавливается на отметку 230 В и 400 В для электрических сетей с переменным током частотой 50 Гц. Стоит сказать, что для зарубежных сетей с частотой 60 Гц имеются некоторые отличия, но допустимое отклонение частоты всего 2%, поэтому для отечественных потребителей эти поправки неактуальны.

Высокое напряжение: основные понятия

Высокое напряжение – это напряжение, которое превышает предельные значения для безопасного использования и требует особых условий и мер предосторожности при работе с ним. Номинальное напряжение – это значение напряжения, которое присваивается электрической системе или устройству и определяет его нормальную работу

Например, для обычной розетки в доме номинальное напряжение составляет 220 В

Номинальное напряжение – это значение напряжения, которое присваивается электрической системе или устройству и определяет его нормальную работу. Например, для обычной розетки в доме номинальное напряжение составляет 220 В.

Высоковольтные системы – это системы с напряжением выше номинального напряжения энергоснабжения, которое обычно принимается равным 1 киловольту (1 кВ) и выше.

Высоковольтные линии – это системы электропередачи, состоящие из высоковольтных проводов и сооружений, предназначенных для передачи электрической энергии на большие расстояния.

Изоляция – это материалы, используемые для разделения проводников от окружающей среды и других проводников, чтобы предотвратить протекание электрического тока.

Изоляционное сопротивление – это электрическое сопротивление, которое оказывает изоляция на протекающий через нее электрический ток. Чем выше значение изоляционного сопротивления, тем более эффективной является изоляция.

Проводник – это материал, способный проводить электрический ток. Обычно используются металлы, такие как медь или алюминий, в качестве проводников.

Электрический разряд – это процесс выравнивания электрического потенциала между проводниками с разными зарядами, вызывающий искровую разрядку. Это может привести к повреждению оборудования и возгоранию.

Высоковольтные трансформаторы – это электрические устройства, которые используются для повышения или понижения напряжения в системе электропередачи. Они обычно применяются для передачи электроэнергии на большие расстояния.

Высокое напряжение и безопасность – работа с высоким напряжением требует соблюдения специальных мер предосторожности, таких как использование изолирующих перчаток и диэлектрических материалов, обучение и навыки в области безопасности, а также строгое следование инструкциям по работе с высоким напряжением

Технические требования и надзор

Для обеспечения безопасности при эксплуатации линий электропередач в России устанавливаются строгие технические требования и осуществляется надзор со стороны специализированных органов.

Одним из основных требований является установление максимального напряжения для линий электропередач. В России это значение определяется ГОСТ Р 51317.4.30-2014 «Электрическое оборудование автоматики и управления. Электромагнитная совместимость технических средств. Технические требования и методы испытаний».

Для линий электропередач с напряжением выше 1 кВ необходимо проводить техническое обследование и диагностику, включающие осмотр, проверку электрических параметров и состояния изоляции. Эти меры помогают выявлять возможные дефекты и предотвращать аварийные ситуации.

Надзор за соблюдением технических требований и безопасной эксплуатацией линий электропередач осуществляют специальные организации, такие как Российская электрическая дорога (РЖД), Россети, Министерство энергетики и другие.

Органы надзора проводят плановые и внеплановые проверки линий электропередач, контролируют выполнение технических требований, а также занимаются выявлением и расследованием аварийных ситуаций.

Соблюдение технических требований и профессиональный надзор способствуют обеспечению надежности и безопасности линий электропередач в России.

Тем временем в России

Россия запаздывала в развитии. То ли тайные партячейки первых революционеров отнимали силы у государства, то ли злой рок помешал стране идти в ногу со временем, факт остаётся фактом – догнать и перегнать запад не удалось, единственная высоковольтная линия оказалась разорванной исключением Казахстана из состава РФ при перевороте 90-х годов.

В мире потребление энергии каждые десять лет росло вдвое на период первого нефтяного кризиса. К началу 80-х построены первые линии сверхвысокого напряжения:

  1. 1150 кВ переменного тока.
  2. 1500 кВ постоянного тока.

На 1980 год в СССР действовало 70 электростанций, дававших стране по 1 ГВт и более мощности. В период с 1960 по 1990 год протяжённость линий советского государства выросла с 0,22 до 5,1 млн. км. На момент окончания «перестройки» акцент приходился на сети класса напряжения 220 кВ. Почти вдвое за прошедшие годы выросла протяжённость линий от 330 до 750 кВ. Апогеем развития советские политики считали линию Сибирь-Экибастуз-Урал, где применены самые высокие потенциалы, означенные по тексту.

Важность класса напряжения в электротехнике

Класс напряжения — это один из важных параметров, которым руководствуются при разработке и проектировании электротехнических устройств. Он определяет диапазон напряжений, в котором данное устройство может работать и обеспечивает безопасность и надёжность его эксплуатации.

Безопасность. Класс напряжения позволяет гарантировать безопасную эксплуатацию устройств, так как указывает на пределы напряжений, которые не должны быть превышены

Это особенно важно при работе с электрооборудованием, так как неправильное использование или превышение допустимых значений может привести к поражению электрическим током человека.
Надежность. Класс напряжения помогает определить особенности работы устройства и его компонентов, которые в свою очередь смогут обеспечить долговечность и стабильную работу системы в заданном диапазоне напряжений

Это позволяет избежать необходимости замены и ремонта устройств в случае превышения или снижения напряжения.
Проектирование и подбор оборудования. Класс напряжения служит основой для разработки и подбора электротехнических устройств. Зная требуемый класс напряжения, инженеры могут выбрать подходящие компоненты, провода и другое оборудование, чтобы обеспечить оптимальную работу и долговечность системы.
Стандартизация. Класс напряжения является частью стандартов и нормативов, которые обязательны для соблюдения в электротехнике. Он помогает унифицировать и систематизировать данные по напряжениям и связанным параметрам, чтобы упростить взаимодействие разных систем и обеспечить их совместимость.

В целом, класс напряжения играет важную роль в электротехнике, обеспечивая безопасность, надёжность и оптимальную работу электротехнических систем.

Схема передачи электроэнергии

Расстояние до токоведущих частей находящихся под напряжением

В цепи от производства энергии до получения ее потребителями существует несколько звеньев:

  • генератор на электростанции, вырабатывающий электроэнергию напряжением 6,3-24 кВ (есть отдельные агрегаты с большим номинальным напряжением);
  • повышающие подстанции (ПС);
  • сверхдальние и магистральные ЛЭП напряжением 220-1150 кВ;
  • крупные узловые ПС, понижающие напряжение до 110 кВ;
  • ЛЭП 35-110 кВ для передачи электрической энергии на питающие центры;
  • дополнительные понижающие подстанции – питающие центры, где получают напряжение 6-10 кВ;
  • распределительные ЛЭП 6-10 кВ;
  • трансформаторные пункты (ТП), ЦРП, находящиеся рядом с потребителями, для понижения напряжения до 0,4 кВ;
  • низковольтные линии для подведения к домам и другим объектам.


Упрощенная схема передачи электроэнергии

Как происходит передача и распределение электроэнергии? – Электро Помощь

Производство, передача и распределение электроэнергии.

   Проблема обеспечения энергией уже в самое ближайшее время станет одной из наиболее острых среди глобальных проблем человечества.

Более 60% энергии вырабатывается на тепловых электростанциях (ТЭС) на органическом топливе (уголь, нефтепродукты, газ, торф), примерно 18% – на атомных (АЭС) и гидроэлектростанциях (ГЭС), а остальные 2% – на солнечных, ветровых, геотермальных и прочих электростанциях.

   Производство электрической энергии в России концентрируется преимущественно на крупных электростанциях. Потребители электрической энергии – промышленность, строительство, электрифицированный транспорт, сельское хозяйство, сфера бытового обслуживания расположены в городах и сельской местности.

Центры потребления электроэнергии, как правило, удалены от ее источников зачастую на расстояния в сотни и даже тысячи километров и распределены на значительной территории. В связи с этим возникает задача транспортирования электроэнергии от станций к потребителям.

Эту задачу выполняют электрические сети, состоящие из линий электропередачи (ЛЭП) и подстанций.

   Передача электрической энергии от электростанций до больших городов или промышленных центров на расстояния тысяч километров является сложной научно-технической проблемой.

   Для уменьшения потерь на нагревания проводов необходимо уменьшить силу тока в линии передачи (ЛЭП), и, следовательно, увеличить напряжение.

Обычно линии электропередачи строятся в расчете на напряжение 400–500 кВ, при этом в линиях используется трехфазный ток переменной частоты 50 Гц.

На рисунке представлена схема линии передачи электроэнергии от электростанции до потребителя. Схема дает представление об использовании трансформаторов при передаче электроэнергии.

   Следует отметить, что при повышении напряжения в линиях передачи увеличиваются утечки энергии через воздух. В сырую погоду вблизи проводов линии может возникнуть так называемый коронный разряд, который можно обнаружить по характерному потрескиванию. Коэффициент полезного действия линии передач не превышает 90 %.

Условная схема высоковольтной линии передачи. Трансформаторы изменяют напряжение в нескольких точках линии. На схеме изображен только один из трех проводов высоковольтной линии.

Среди приборов переменного тока, нашедших широкое применение в технике, значительное место занимают трансформаторы.

Трансформатор – прибор для преобразования напряжения и силы переменного тока при неизменной частоте.

Принцип действия трансформаторов, применяемых для повышения или понижения напряжения переменного тока, основан на явлении электромагнитной индукции.

Простейший трансформатор состоит из сердечника замкнутой формы из магнитомягкого материала, на который намотаны две обмотки: первичная и вторичная.

Первичная обмотка подсоединяется к источнику переменного тока с ЭДС e1(t), поэтому в ней возникает ток J1(t), создающий в сердечнике трансформатора переменный магнитный поток Φ, который практически без рассеяния циркулирует по замкнутому магнитному сердечнику и, следовательно, пронизывает все витки первичной и вторичной обмоток.

В режиме холостого хода, то есть при разомкнутой цепи вторичной обмотки, ток в первичной обмотке весьма мал из-за большого индуктивного сопротивления обмотки. В этом режиме трансформатор потребляет небольшую мощность.

В режиме нагрузки в цепь вторичной обмоткивключается сопротивление нагрузки Rн, и в ней возникает переменный ток J2(t). Теперь полный магнитный поток Φ в сердечнике создается обоими токами.

Но согласно правилу Ленца магнитный поток Φ2, создаваемый индуцированным во вторичной обмотке током J2, направлен навстречу потоку Φ1, создаваемому током J1 в первичной обмотке: Φ = Φ1 – Φ2.

Коэффициент k=n1/n2 есть коэффициент трансформации.

При k>1 трансформатор называется повышающим, при k

Передача электроэнергии: популярные способы и альтернативные варианты

Электричество не относится к накопительным ресурсам.

На сегодняшний день нет эффективных технологий, позволяющих аккумулировать энергию, выработанную генераторами, поэтому передача электроэнергии потребителям относится к актуальным задачам.

В стоимость ресурса входят затраты на его производство, потери при транспортировке и расходы на монтаж и обслуживание ЛЭП. При этом от схемы передачи напрямую зависит эффективность системы электроснабжения.

Резервированные распределительные сети

Для создания надежной системы обеспечения электроэнергией, распределительные сети среднего напряжения (СН) делают по резервным схемам, одновременно используя и радиальную и магистральную схемы.

На рисунках мы видим реализации, радиально-магистральную схему резервной распределительной сети (рис 1.3) и кольцевую замкнутую схему сети с единым центром питания.

На следующем фото видим, одинарную и двойную конфигурации сети при двустороннем питании.

А это схема распределительной сети, выполненная по сложно-замкнутой конфигурации с двумя источниками питания (ЦП).

Примечание: ЦП – подстанция. Она принимает электрическую энергию, понижает высокое напряжение распределительной сети способом трансформации (понижающие подстанции) и распределяет электрическую энергию потребителям. Стоит отметить, что есть и повышающие подстанции.

Что такое электрические цепи высокого напряжения

Электрические цепи высокого напряжения — это системы, которые используются для передачи электроэнергии на большие расстояния. Они играют важную роль в обеспечении электроснабжения городов, промышленных предприятий и других объектов.

Электрические цепи высокого напряжения работают на основе нескольких основных принципов. Во-первых, они используют высокое напряжение для уменьшения потерь энергии при передаче по проводам. Благодаря высокому напряжению удается добиться меньшего тока, что снижает потери и позволяет передавать электроэнергию на большие расстояния.

Во-вторых, электрические цепи высокого напряжения используют трансформаторы для изменения напряжения в разных частях системы. Трансформаторы позволяют повышать или понижать напряжение в зависимости от потребностей передачи энергии.

Электрические цепи высокого напряжения имеют широкое применение. Они используются для передачи электроэнергии от гидро- и атомных электростанций до городов и населенных пунктов. Также они применяются для передачи электроэнергии на промышленные предприятия и другие объекты

Эти системы обеспечивают надежное и эффективное электроснабжение, что является важной составляющей современной инфраструктуры

Классификация электрических сетей по выполняемым функциям.

  1. Общего электроснабжения (бытового, промышленнго, сельскохозяйственного назначения и использования на транспорте).
  2. Автономные (для электроснабжения мобильных и обособленных объектов, таких как, морские и речные суда, авиационные и космические аппараты, географически обособленные и стратегические объекты, в том числе промышленной и оборонной инфраструктуры, и т.д..).
  3. Промышленно-технологические (для промышленных объектов, в том числе объектов производств и других инженерных сетей).
  4. Контактные (передачи электрической энергии на железнодорожный, городской электрический и гибридный транспорт, и прочие транспортные средства, включая электропоезда, троллейбусы, трамваи).
Понравилась статья? Поделиться с друзьями:
Журнал «Наш дворик»
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: